Pharmaceutical Sciences and Natural Products - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/56
Browse
3 results
Search Results
Item Recent trends in anticancer drug development: Challenges and opportunities(Bentham Science Publishers B.V., 2017) Skvortsova, Ira-Ida; Kumar, Vinod[No abstract available]Item Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling(Academic Press, 2015) Skvortsov, Ira; Debbage, Paul; Kumar, Vinod; Skvortsov, SergejDespite the fact that radiation therapy is a highly effective therapeutic approach, a small intratumoral cell subpopulation known as "cancer stem cells" (CSCs) is radiation-resistant and possesses specific molecular properties protecting it against radiation-induced damage. The exact mechanisms of this radioresistance are still not fully elucidated, but they relate to these cells' enhanced DNA repair capacities and their low intracellular ROS concentrations, resulting from their up-regulation of ROS scavengers. The low ROS content is accompanied by disturbances in cell cycle regulation, so it can be assumed that either CSCs are quiescent or dormant themselves, or that this cell population consists of at least two cell subpopulations: the normally and the slowly proliferating cells (quiescent or dormant cells). Slowly dividing CSCs show concomitant dysregulation of the signaling molecules mediating both cell cycle progression and maintenance of cell stemness. Despite a massive accumulation of data concerning the mechanisms underlying DNA damage response in CSCs, it represents a challenge to researchers in the era of personalized medicine to elucidate the role of intracellular ROS and of signaling pathways associated with the radiation resistance of these cells; there is a clear need to understand the molecular mechanisms helping CSCs to survive radiation exposure. � 2015 Elsevier Ltd.Item Promising targets in anti-cancer drug development: Recent updates(Bentham Science Publishers B.V., 2017) Kumar, Bhupinder; Singh, Sandeep; Skvortsova, Ira; Kumar, VinodCancer is a multifactorial disease and its genesis and progression are extremely complex. The biggest problem in the anticancer drug development is acquiring of multidrug resistance and relapse. Classical chemotherapeutics directly target the DNA of the cell, while the contemporary anticancer drugs involve molecular-targeted therapy such as targeting the proteins possessing abnormal expression inside the cancer cells. Conventional strategies for the complete eradication of the cancer cells proved ineffective. Targeted chemotherapy was successful in certain malignancies however, the effectiveness has often been limited by drug resistance and side effects on normal tissues and cells. Since last few years, many promising drug targets have been identified for the effective treatment of cancer. The current review article describes some of these promising anticancer targets that include kinases, tubulin, cancer stem cells, monoclonal antibodies and vascular targeting agents. In addition, promising drug candidates under various phases of clinical trials are also described. Multi-acting drugs that simultaneously target different cancer cell signaling pathways may facilitate the process of effective anti-cancer drug development. ? 2017 Bentham Science Publishers.