Pharmaceutical Sciences and Natural Products - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/56

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies
    (Academic Press Inc., 2018) Kumar, Bhupinder; Sharma, Praveen; Gupta, Vivek Prakash; Khullar, Madhu; Singh, Sandeep; Dogra, Nilambra; Kumar, Vinod
    A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC50 values of 4.67 ?M & 3.38 ?M and 4.63 ?M & 3.71 ?M against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket. ? 2018 Elsevier Inc.
  • Thumbnail Image
    Item
    Dual inhibitors of epidermal growth factor receptor and topoisomerase IIa derived from a quinoline scaffold
    (Royal Society of Chemistry, 2016) Chauhan, Monika; Joshi, Gaurav; Kler, Harveen; Kashyap, Archana; Amrutkar, Suyog M.; Sharma, Praveen; Bhilare, Kiran D.; Banerjee, Uttam C.; Singh, Sandeep; Kumar, Raj
    Based on the quinazoline bearing EGFR inhibitors, a series of thirty four compounds having a quinoline scaffold were synthesised and evaluated in vitro for EGFR kinase inhibitory activity. A structure-activity relationship study revealed that 2,4-bis(arylamino) substituted quinolines possessed better anti-EGFR kinase activity. Compounds 3f and 3m emerged as potent EGFR kinase inhibitors (200 and 210 nM, respectively) and showed excellent anticancer activity at the micromolar level against a panel of cancer cell lines comparable to erlotinib. Furthermore, representative compounds inhibited the human topoisomerase II? selectively and catalytically, did not intercalate with DNA, increased intracellular ROS concentration (except 3m) and altered the mitochondrial membrane potential of the cancer cells. Cell cycle analysis and annexin-V staining in a lung cancer cell line showed that the compounds delayed cell cycle progression by inducing cell cycle arrest and subsequent apoptosis at the G1 phase. The facts were further corroborated through molecular modeling studies. ? 2018 The Royal Society of Chemistry.
  • Thumbnail Image
    Item
    Synthesis and xanthine oxidase inhibitory activity of 5,6 dihydropyrazolo/pyrazolo[1,5-c]quinazoline derivatives
    (Elsevier, 2014) Kumar, Deependra; Kaur, Gagandeep; Negi, Arvind; Kumar, Sanjeev; Singh, Sandeep; Kumar, Raj
    Some 5,6-dihydropyrazolo/pyrazolo[1,5-c]quinazoline derivatives were rationally designed, synthesized and evaluated for in vitro xanthine oxidase inhibitory activity for the first time. Some notions about structure activity relationships are presented. The compounds 6g, 6h and 6e were found to be significantly active against XO. The compound 6g emerged as the most potent XO inhibitor as compared to allopurinol and free radical scavenger. The molecular docking of 6g into the XO active site highlighted its mode of binding and important interactions such as hydrogen bonding, π–π stacking with amino acid residues like Ser876, Thr1010, Phen914, Phe1009 and Phe649 and its close proximity to dioxothiomolybdenum (MOS).
  • Thumbnail Image
    Item
    Design, microwave-mediated synthesis and biological evaluation of novel 4 aryl(alkyl)amino-3-nitroquinoline and 2,4-diaryl(dialkyl) amino-3-nitroquinolines as anticancer agents
    (Elsevier, 2015) Chauhan, Monika; Rana, Anil; Alex, Jimi Marin; Negi, Arvind; Singh, Sandeep; Kumar, Raj
    Design, microwave-assisted synthesis of novel 4-aryl (alkyl)amino-3-nitroquinoline (1a–1l) and 2,4-diaryl (dialkyl)amino-3-nitroquinolines (2a–2k and 3a) via regioselective and complete nucleophilic substitution of 2,4-dichloro-3-nitroquinoline, respectively in water are presented. The newly synthesized compounds were evaluated for the first time for antiproliferative activity against EGFR overexpressing human lung (A-549 and H-460) and colon (HCT-116-wild type and HCT-116-p53 null) cancer cell lines. Some notions about structure–activity relationships (SAR) are presented. Compounds 2e, 2f, 2j and 3a overall exhibited excellent anticancer activity comparable to erlotinib which was used as a positive control. Molecular modeling studies disclosed the recognition pattern of the compounds and also supported the observed SAR.
  • Thumbnail Image
    Item
    Synthesis and biological evaluation of new 2, 5- dimethylthiophene/furan based N-acetyl pyrazolines as selective topoisomerase II inhibitors
    (Royal Society of Chemistry, 2016) Darpan; Joshi, Gaurav; Amrutkar, Suyog M.; Baviskar, Ashish T.; Kler, Harveen; Singh, Sandeep; Banerjee, Uttam C.; Kumar, Raj
    Based on the reported pharmacophores as topoiomerase inhibitors, 2,5 dimethylthiophen/furan based N-acetyl pyrazolines were designed and envisaged as topoisomerase inhibitors. The target compounds were synthesized and tested in vitro against human topoisomerases in decatenation, relaxation, cleavage complex and DNA intercalation assay. Out of 29 compounds, three (10, 11 and 29) showed potent and selective toposiomerse II inhibitory activity with no intercalation with DNA. Further, molecular docking studies also endorsed them as ATP dependent topoisomerase II catalytic inhibitors. These compounds exerted potential anticancer effects on breast, colon, lung and prostate cancer cell lines at low micromolar level as compared to etoposide and low toxicity to normal cells. Apart from the topoisomerase II inhibition, these compounds also induced the reactive oxygen species (ROS) level in cancer cells. The cell cycle analyses showed their apoptotic effect at G1 phase.
  • Thumbnail Image
    Item
    Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents.
    (Elsevier, 2015) Joshi,Gaurav; Singh, Pankaj Kumar; Negi, Arvind; Rana, Anil; Singh, Sandeep; Kumar, Raj
    Cancer is one of the leading causes of mortality amongst world’s population, in which prostate cancer is one of the most encountered malignancies among men. Globally, it is the sixth leading cause of cancer-related death in men. Prostate cancer is more prevalent in the developed world and is increasing at alarming rates in the developing countries. Prostate cancer is mostly a very sluggish progressing disease, caused by the overproduction of steroidal hormones like dihydrotestosterone or due to over-expression of enzymes such as 5-α-reductase. Various studies have revealed that growth factors play a crucial role in the progression of prostate cancer as they act either by directly elevating the level of steroidal hormones or upregulating enzyme efficacy by the active feedback mechanism. Presently, treatment options for prostate cancer include radiotherapy, surgery and chemotherapy. If treatment is done with prevailing traditional chemotherapy; it leads to resistance and development of androgen-independent prostate cancer that further complicates the situation with no cure option left. The current review article is an attempt to cover and establish an understanding of some major signalling pathways intervened through survival factors (IGF-1R), growth factors (TGF-α, EGF), Wnt, Hedgehog, interleukin, cytokinins and death factor receptor which are frequently dysregulated in prostate cancer. This will enable the researchers to design and develop better therapeutic strategies targeting growth factors and their cross talks mediated prostate cancer cell signalling.
  • Thumbnail Image
    Item
    1-Acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles: Exhibiting anticancer activity through intracellular ROS scavenging and the mitochondria-dependent death pathway
    (Wiley-VCH Verlag, 2014) Alex, Jimi M.; Singh, Sandeep; Kumar, Raj
    A series of 17 analogs of 1-acetyl-4,5-dihydro(1H)pyrazoles (JP-1 to JP-17) bearing two aromatic rings at positions 3 and 5, either of which ought to be heterocyclic, were synthesized and evaluated for their anti-proliferative potential against breast cancer (MCF-7 and T-47D) and lung cancer (H-460 and A-549) cell lines for the first time. JP-1-7, -10, -11, -14, and -15 were observed to exhibit significant anti-proliferative activity against MCF-7 cells. Some notions about structure-activity relationships are reported. The investigated compounds were found to lower the intracellular reactive oxygen species in the H2DCFDA assay and also caused mitochondria-dependent cell death in the MCF-7 cell line, indicating a plausible mechanism of their anticancer effect. Analogs of 1-acetyl-4,5-dihydro(1H)pyrazoles (JP-1-17) were synthesized and evaluated for their anti-proliferative activity in four cancer cell lines and for their intracellular ROS scavenging properties. An attempt was made to determine the mitochondrial membrane potential of MCF-7 cells treated with JP-1 and -14, aiming to elucidate the mechanism by which proliferation was curbed. ? 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Thumbnail Image
    Item
    Pyrimidine containing epidermal growth factor receptor kinase inhibitors: Synthesis and biological evaluation
    (Blackwell Publishing Ltd, 2017) Joshi, Gaurav; Nayyar, Himanshu; Kalra, Sourav; Sharma, Praveen; Munshi, Anjana; Singh, Sandeep; Kumar, Raj
    Structure-based design and synthesis of pyrimidine containing reversible epidermal growth factor receptor (EGFR) inhibitors 1a?d are reported. The compounds (1a?d) inhibited the EGFR kinase activity in vitro with IC50 range 740?nm to 3??m. mRNA expression of EGFR downstream target genes, that is twist, c-fos and aurora were found to be altered upon treatment with compounds 1a?d. The compounds 1a?d exhibited excellent anticancer activity at low micromolar level (3.2?9??m) in lung, colon and breast cancer cell lines. Furthermore, compounds induced the alteration in mitochondrial membrane potential and reactive oxygen species level and. Selected compound 1b was found to increase sub-G1 population indicative of cell death, the mode of cell death was apoptotic as evident from Annexin V verses propidium iodide assay. Molecular modelling further helped to investigate the binding recognition pattern of the compounds in ATP binding EGFR domain similar to erlotinib and dissimilar to WZ4002. ? 2017 John Wiley & Sons A/S.
  • Thumbnail Image
    Item
    Promising targets in anti-cancer drug development: Recent updates
    (Bentham Science Publishers B.V., 2017) Kumar, Bhupinder; Singh, Sandeep; Skvortsova, Ira; Kumar, Vinod
    Cancer is a multifactorial disease and its genesis and progression are extremely complex. The biggest problem in the anticancer drug development is acquiring of multidrug resistance and relapse. Classical chemotherapeutics directly target the DNA of the cell, while the contemporary anticancer drugs involve molecular-targeted therapy such as targeting the proteins possessing abnormal expression inside the cancer cells. Conventional strategies for the complete eradication of the cancer cells proved ineffective. Targeted chemotherapy was successful in certain malignancies however, the effectiveness has often been limited by drug resistance and side effects on normal tissues and cells. Since last few years, many promising drug targets have been identified for the effective treatment of cancer. The current review article describes some of these promising anticancer targets that include kinases, tubulin, cancer stem cells, monoclonal antibodies and vascular targeting agents. In addition, promising drug candidates under various phases of clinical trials are also described. Multi-acting drugs that simultaneously target different cancer cell signaling pathways may facilitate the process of effective anti-cancer drug development. ? 2017 Bentham Science Publishers.