Pharmaceutical Sciences and Natural Products - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/56

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Selective Estrogen receptor degraders (SERDs) for the treatment of breast cancer: An overview
    (Elsevier Masson s.r.l., 2023-05-04T00:00:00) Bhatia, Neha; Hazra, Shreejita; Thareja, Suresh
    Discovery of SERDs has changed the direction of anticancer research, as more than 70% of breast cancer cases are estrogen receptor positive (ER+). Therapies such as selective estrogen receptor modulators (SERM) and aromatase inhibitors (AI's) have been effective, but due to endocrine resistance, SERDs are now considered essential therapeutics for the treatment of ER+ breast cancer. The present review deliberates the pathophysiology of SERDs from the literature covering various molecules in clinical trials. Estrogen receptors active sites distinguishing characteristics and interactions with currently available FDA-approved drugs have also been discussed. Designing strategy of previously reported SERDs, their SAR analysis, in silico, and the biological efficacy have also been summarized along with appropriate examples. � 2023 Elsevier Masson SAS
  • Item
    Medicinal chemistry aspects and synthetic strategies of coumarin as aromatase inhibitors: an overview
    (Springer, 2022-12-05T00:00:00) Ratre, Pooja; Kulkarni, Swanand; Das, Sweety; Liang, Chengyuan; Mishra, Pradyumna Kumar; Thareja, Suresh
    Coumarin is a bicyclic oxygen bearing heterocyclic scaffold formed by fusion of benzene with the pyrone ring. Because of its unique physicochemical characteristics and the ease with which it may be transformed into a wide range of functionalized coumarins during�synthesis, coumarin provides a privileged scaffold for medicinal chemists. As a result, many coumarin derivatives have been developed, synthesized, and evaluated to target a variety of therapeutic domains, thereby making it an attractive template for designing novel anti-breast cancer compounds. The main culprit in estrogen overproduction in the estrogen-dependent breast cancer (EDBC), is the enzyme aromatase (AR), and it is thought to be a significant target for the effective treatment of EDBC. Considering coumarins versatility, this review presents a detailed overview of diverse study of aromatase as a target for coumarins. An overview of structure�activity relationship analysis of coumarin core is also included so as to summarize the desired pharmacophoric features essential for design and development of aromatase inhibitors (AIs) using coumarin core. Identification of key synthesis techniques that could aid researchers in designing and developing novel analogues with significant anti-breast cancer properties along with their mechanism of action have also been covered in the current review. Graphical Abstract: [Figure not available: see fulltext.] � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Recent development in indole derivatives as anticancer agent: A mechanistic approach
    (Bentham Science Publishers, 2021-01-05T00:00:00) Devi, Neha; Kaur, Kamalpreet; Biharee, Avadh; Jaitak, Vikas
    Background: Cancer accounts for several deaths each year. There are multiple FDA approved drugs for cancer treatments. Due to the severe side effects and multiple drug resistance, the current drug therapies become ineffective. So, the newer moieties with fewer toxic effects are necessary for the development. Objective: The mechanism of indole derivatives as anti-cancer agents with their major target is explored in detail in this article. Methods: Recent advances and mechanism of indole derivatives as anti-cancer agents are reviewed. This review suggests a detailed explanation of multiple mechanisms of action of various indole derivatives: cell cycle arrest, aromatase inhibitor estrogen receptor regulator, tubulin inhibitor, a tyrosine kinase inhibitor, topoisomerase inhibitors, and NFkB/PI3/Akt/mTOR pathway inhibitors, through which these derivatives have shown promising anti-cancer potential. Results: A full literature review showed that the indole derivatives are associated with the properties of inducing apoptosis, aromatase inhibition, regulation of estrogen receptor and inhibition of tyrosine kinase, tubulin assembly, NFkB/PI3/Akt/mTOR pathway, and HDACs. These derivatives have shown significant activity against cancer cell lines. Conclusion: Indole derivatives seem to be important in cancer via acting through various mechanisms. This review has shown that the indole derivatives can further be explored for the betterment of cancer treatment, and to discover the hidden potential of indole derivatives. � 2021 Bentham Science Publishers.
  • Item
    Polymeric nanoparticles of aromatase inhibitors: A comprehensive review
    (Bentham Science Publishers, 2020-09-29T00:00:00) Mishra, Keerti; Ratre, Pooja; Thareja, Suresh; Jain, Akhlesh K.
    Being the second most frequent cancer, breast cancer is emerging worldwide with an alarming rate, specifically in post-menopausal women. Targeted drug delivery has been in the focus for the successful treatment of breast cancer by enhancing the drug delivery efficiency and reducing the systemic toxicity of drugs. Al-so, it eliminates the drawbacks associated with conventional chemotherapy, including neuropathy, memory loss, cardiotoxicity and low RBCs count. This review elaborates the polymeric nanoparticles based formulation approaches for selective and sustained delivery for effective cure of breast cancer. However, breast cancer, a life-threatening disease, is mostly caused because of estrogen, thus aromatase inhibitors and estrogen synthesis inhibitors could prevent chances of breast cancer. The disease is associated with drug resistance and some side effects, which could be easily eliminated by using novel therapeutic approaches. Aromatase inhibitors, when en-trapped in nanoparticles, have shown sustained drug release, advocating themselves to be beneficial for the treatment of breast cancer. � 2021 Bentham Science Publishers.
  • Item
    Multitargeted molecular docking study of natural-derived alkaloids on breast cancer pathway components
    (Bentham Science Publishers B.V., 2017) Singla, Ramit; Jaitak, Vikas
    Background: Targeting of multiple sites is a pharmacologically, pharmacokinetic and dynamically more acceptable approach for complex diseases such as BC. It is recommended that the women who are at high risk of developing BC might be given foods enhanced by indole alkaloids from vegetables like cabbage and broccoli. Administration of indole-3-carbinol is associated with decreased incidence of hormone-responsive BC (HRBC) which is implicated due to the induction of cytochrome P450 and glutathione-S-transferase which metabolizes chemical mutagens and by altering estrogen metabolism. Objective: To determine the molecular mechanism behind the anticancer activity of natural indole alkaloids present in various food and nutraceuticals products by utilizing Induced-fit docking (IFD) approach. Methods: Indole alkaloids were obtained from the database maintained by ChEBI (The database and ontology of Chemical Entities of Biological Interest) with ChEBI id 38958. The 3-dimentional and X-ray structure coordinates of Estrogen receptor- ? (ER-?), Estrogen receptor- ? (ER-?), and aromatase were obtained from protein data bank with PDB id codes 3ERT, 3OLS, and 3S7S (www.rcsb.org). The Induced fit molecular docking and ADME properties were calculated using Maestro 9.6. Results: IFD analysis showed that bromocriptine exhibits maximum binding affinity towards ER-? and fellutanine B towards ER-? and aromatase. Conclusion: Present research provided in-depth analysis of molecular mechanism and helped in the future design of new pharmacophores based on natural indole alkaloids targeting BC. ? 2017 Bentham Science Publishers.