Pharmaceutical Sciences and Natural Products - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/56
Browse
2 results
Search Results
Item PROTAC�ing oncoproteins: targeted protein degradation for cancer therapy(BioMed Central Ltd, 2023-03-30T00:00:00) Kelm, Jeremy M.; Pandey, Deepti S.; Malin, Evan; Kansou, Hussein; Arora, Sahil; Kumar, Raj; Gavande, Navnath S.Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design. � 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.Item Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A review(Bentham Science Publishers B.V., 2016) Kaur, Ramandeep; Dwivedi, Ashish Ranjan; Kumar, Bhupinder; Kumar, Vinod1,2,4 triazole is an important nucleus present in a large number of compounds. More than thirty-five compounds containing this nucleus are introduced into the market. 1,2,4-triazole nucleus is stable to metabolism and acts as an important pharmacophore by interacting at the active site of a receptor as hydrogen bond acceptor and as a donor. Due to its polar nature, the triazole nucleus can increase the solubility of the ligand and it can significantly improve the pharmacological profile of the drug. A large number of 1,2,4-triazole derivatives are reported to possess a wide range of bioactivities including anti-cancer activity. This review article describes the role of 1,2,4-triazole nucleus in different types of anti-cancer agents such as nucleoside based anti-cancer agents, kinase inhibitors, tubulin modulators, aromatase and steroid sulfatase inhibitors, methionine aminopeptidase inhibitors, tankyrase inhibitors and metal complex based anti-cancer agents. It is expected that the current review article will provide insight into various ligand-receptor interactions and help in the rational design and development of novel 1,2,4-triazole based anti-cancer drugs with improved selectivity for cancer cells. ? 2016 Bentham Science Publishers.