Human Genetics And Molecular Medicine - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/107
Browse
2 results
Search Results
Item Mitochondrial miRNA as epigenomic signatures: Visualizing aging-associated heart diseases through a new lens(Elsevier Ireland Ltd, 2023-02-11T00:00:00) Bhatti, Jasvinder Singh; Khullar, Naina; Vijayvergiya, Rajesh; Navik, Umashanker; Bhatti, Gurjit Kaur; Reddy, P. HemachandraAging bears many hard knocks, but heart disorders earn a particular allusion, being the most widespread. Cardiovascular diseases (CVDs) are becoming the biggest concern to mankind due to sundry health conditions directly or indirectly related to heart-linked abnormalities. Scientists know that mitochondria play a critical role in the pathophysiology of cardiac diseases. Both environment and genetics play an essential role in modulating and controlling mitochondrial functions. Even a minor abnormality may prove detrimental to heart function. Advanced age combined with an unhealthy lifestyle can cause most cardiomyocytes to be replaced by fibrotic tissue which upsets the conducting system and leads to arrhythmias. An aging heart encounters far more heart-associated comorbidities than a young heart. Many state-of-the-art technologies and procedures are already being used to prevent and treat heart attacks worldwide. However, it remains a mystery when this heart bomb would explode because it lacks an alarm. This calls for a novel and effective strategy for timely diagnosis and a sure-fire treatment. This review article provides a comprehensive overture of prospective potentials of mitochondrial miRNAs that predict complicated and interconnected pathways concerning heart ailments and signature compilations of relevant miRNAs as biomarkers to plot the role of miRNAs in epigenomics. This article suggests that analysis of DNA methylation patterns in age-associated heart diseases may determine age-impelled biomarkers of heart disease. � 2023 Elsevier B.V.Item Glucagon-like peptide 1 and fibroblast growth factor-21 in non-alcoholic steatohepatitis: An experimental to clinical perspective(Academic Press, 2022-09-06T00:00:00) Yadav, Poonam; Khurana, Amit; Bhatti, Jasvinder Singh; Weiskirchen, Ralf; Navik, UmashankerNon-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), which slowly progresses toward cirrhosis and finally leads to the development of hepatocellular carcinoma. Obesity, insulin resistance, type 2 diabetes mellitus and the metabolic syndrome are major risk factors contributing to NAFLD. Targeting these risk factors is a rational option for inhibiting NASH progression. In addition, NASH could be treated with therapies that target the metabolic abnormalities causing disease pathogenesis (such as de novo lipogenesis and insulin resistance) as well with medications targeting downstream processes such as cellular damage, apoptosis, inflammation, and fibrosis. Glucagon-like peptide (GLP-1), is an incretin hormone dysregulated in both experimental and clinical NASH, which triggers many signaling pathways including fibroblast growth factor (FGF) that augments NASH pathogenesis. Growing evidence indicates that GLP-1 in concert with FGF-21 plays crucial roles in the conservation of glucose and lipid homeostasis in metabolic disorders. In line, GLP-1 stimulation improves hepatic ballooning, steatosis, and fibrosis in NASH. A recent clinical trial on NASH patients showed that the upregulation of FGF-21 decreases liver fibrosis and hepatic steatosis, thus improving the pathogenesis of NASH. Hence, therapeutic targeting of the GLP-1/FGF axis could be therapeutically beneficial for the remission of NASH. This review outlines the significance of the GLP-1/FGF-21 axis in experimental and clinical NASH and highlights the activity of modulators targeting this axis as potential salutary agents for the treatment of NASH. � 2022 Elsevier Ltd