Human Genetics And Molecular Medicine - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/107

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Stem cells in the treatment of Alzheimer's disease � Promises and pitfalls
    (Elsevier B.V., 2023-04-06T00:00:00) Bhatti, Jasvinder Singh; Khullar, Naina; Mishra, Jayapriya; Kaur, Satinder; Sehrawat, Abhishek; Sharma, Eva; Bhatti, Gurjit Kaur; Selman, Ashley; Reddy, P. Hemachandra
    Alzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-? and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology. � 2023 Elsevier B.V.
  • Item
    Insight into the liver dysfunction in COVID-19 patients: Molecular mechanisms and possible therapeutic strategies
    (Baishideng Publishing Group Inc, 2023-04-12T00:00:00) Khullar, Naina; Bhatti, Jasvinder Singh; Singh, Satwinder; Thukral, Bhawana; Hemachandra Reddy, P.; Bhatti, Gurjit Kaur
    As of June 2022, more than 530 million people worldwide have become ill with coronavirus disease 2019 (COVID-19). Although COVID-19 is most commonly associated with respiratory distress (severe acute respiratory syndrome), meta-analysis have indicated that liver dysfunction also occurs in patients with severe symptoms. Current studies revealed distinctive patterning in the receptors on the hepatic cells that helps in viral invasion through the expression of angiotensin-converting enzyme receptors. It has also been reported that in some patients with COVID-19, therapeutic strategies, including repurposed drugs (mitifovir, lopinavir/ritonavir, tocilizumab, etc.) triggered liver injury and cholestatic toxicity. Several proven indicators support cytokine storm-induced hepatic damage. Because there are 1.5 billion patients with chronic liver disease worldwide, it becomes imperative to critically evaluate the molecular mechanisms concerning hepatotropism of COVID-19 and identify new potential therapeutics. This review also designated a comprehensive outlook of comorbidities and the impact of lifestyle and genetics in managing patients with COVID-19. � The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
  • Item
    Mitochondrial miRNA as epigenomic signatures: Visualizing aging-associated heart diseases through a new lens
    (Elsevier Ireland Ltd, 2023-02-11T00:00:00) Bhatti, Jasvinder Singh; Khullar, Naina; Vijayvergiya, Rajesh; Navik, Umashanker; Bhatti, Gurjit Kaur; Reddy, P. Hemachandra
    Aging bears many hard knocks, but heart disorders earn a particular allusion, being the most widespread. Cardiovascular diseases (CVDs) are becoming the biggest concern to mankind due to sundry health conditions directly or indirectly related to heart-linked abnormalities. Scientists know that mitochondria play a critical role in the pathophysiology of cardiac diseases. Both environment and genetics play an essential role in modulating and controlling mitochondrial functions. Even a minor abnormality may prove detrimental to heart function. Advanced age combined with an unhealthy lifestyle can cause most cardiomyocytes to be replaced by fibrotic tissue which upsets the conducting system and leads to arrhythmias. An aging heart encounters far more heart-associated comorbidities than a young heart. Many state-of-the-art technologies and procedures are already being used to prevent and treat heart attacks worldwide. However, it remains a mystery when this heart bomb would explode because it lacks an alarm. This calls for a novel and effective strategy for timely diagnosis and a sure-fire treatment. This review article provides a comprehensive overture of prospective potentials of mitochondrial miRNAs that predict complicated and interconnected pathways concerning heart ailments and signature compilations of relevant miRNAs as biomarkers to plot the role of miRNAs in epigenomics. This article suggests that analysis of DNA methylation patterns in age-associated heart diseases may determine age-impelled biomarkers of heart disease. � 2023 Elsevier B.V.
  • Item
    Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives
    (Elsevier Inc., 2022-04-07T00:00:00) Bhatti, Jasvinder Singh; Sehrawat, Abhishek; Mishra, Jayapriya; Sidhu, Inderpal Singh; Navik, Umashanker; Khullar, Naina; Kumar, Shashank; Bhatti, Gurjit Kaur; Reddy, P. Hemachandra
    Type 2 diabetes (T2DM) is a persistent metabolic disorder rising rapidly worldwide. It is characterized by pancreatic insulin resistance and ?-cell dysfunction. Hyperglycemia induced reactive oxygen species (ROS) production and oxidative stress are correlated with the pathogenesis and progression of this metabolic disease. To counteract the harmful effects of ROS, endogenous antioxidants of the body or exogenous antioxidants neutralise it and maintain bodily homeostasis. Under hyperglycemic conditions, the imbalance between the cellular antioxidant system and ROS production results in oxidative stress, which subsequently results in the development of diabetes. These ROS are produced in the endoplasmic reticulum, phagocytic cells and peroxisomes, with the mitochondrial electron transport chain (ETC) playing a pivotal role. The exacerbated ROS production can directly cause structural and functional modifications in proteins, lipids and nucleic acids. It also modulates several intracellular signaling pathways that lead to insulin resistance and impairment of ?-cell function. In addition, the hyperglycemia-induced ROS production contributes to micro- and macro-vascular diabetic complications. Various in-vivo and in-vitro studies have demonstrated the anti-oxidative effects of natural products and their derived bioactive compounds. However, there is conflicting clinical evidence on the beneficial effects of these antioxidant therapies in diabetes prevention. This review article focused on the multifaceted role of oxidative stress caused by ROS overproduction in diabetes and related complications and possible antioxidative therapeutic strategies targeting ROS in this disease. � 2022 Elsevier Inc.