Human Genetics And Molecular Medicine - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/107

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Computational investigation of binding mechanism of substituted pyrazinones targeting corticotropin releasing factor-1 receptor deliberated for anti-depressant drug design
    (Taylor and Francis, 2019) Shekhar, M.S; Venkatachalam, T; Sharma, C.S; Pratap, Singh, H; Kalra, Sourav; Kumar, N.
    In spite of various research investigations towards anti-depressant drug discovery program, no one drug has not yet launched last 20 years. Corticotropin-releasing factor-1 (CRF-1) is one of the most validated targets for the development of antagonists against depression, anxiety and post-traumatic stress disorders. Various research studies suggest that pyrazinone based CRF-1 receptor antagonists were found to be highly potent and efficacious. In this research investigation, we identified the pharmacophore and binding pattern through 2D and 3D-QSAR and molecular docking respectively. Molecular dynamics studies were also performed to explore the binding pattern recognition. We establish the relationship between activity and pharmacophoric features to design new potent compounds. The best 2D-QSAR model was generated through multiple linear regression method with r2 value of 0.97 and q2 value of 0.89. Also 3D-QSAR model was obtained through k-nearest neighbor molecular field analysis method with q2 value of 0.52 and q2_se value of 0.36. Molecular docking and binding energy were also evaluated to define binding patterns and pharmacophoric groups, including (i) hydrogen bond with residue Asp284, Glu305 and (ii) π–π stacking with residue Trp9. Compound 11i has the highest binding affinity compared to reference compounds, so this compound could be a potent drug for stress related disorders. Most of the compounds, including reference compounds were found within acceptable range of physicochemical parameters. These observations could be provided the leads for the design and optimization of novel CRF-1 receptor antagonists. Communicated by Ramaswamy H. Sarma. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.
  • Thumbnail Image
    Item
    Genome-wide endogenous DAF-16/FOXO recruitment dynamics during lowered insulin signalling in C. elegans
    (Impact Journals LLC, 2015) Kumar, N.; Jain, V.; Singh, A.; Jagtap, U.; Verma, S.; Mukhopadhyay, A.
    Lowering insulin-IGF-1-like signalling (IIS) activates FOXO transcription factors (TF) to extend life span across species. To study the dynamics of FOXO chromatin occupancy under this condition in C. elegans, we report the first recruitment profile of endogenous DAF-16 and show that the response is conserved. DAF-16 predominantly acts as a transcriptional activator and binding within the 0.5 kb promoter-proximal region results in maximum induction of downstream targets that code for proteins involved in detoxification and longevity. Interestingly, genes that are activated under low IIS already have higher DAF-16 recruited to their promoters in WT. DAF- 16 binds to variants of the FOXO consensus sequence in the promoter proximal regions of genes that are exclusively targeted during low IIS. We also define a set of 'core' direct targets, after comparing multiple studies, which tend to co-express and contribute robustly towards IIS-associated phenotypes. Additionally, we show that nuclear hormone receptor DAF-12 as well as zinc-finger TF EOR-1 may bind DNA in close proximity to DAF-16 and distinct TF classes that are direct targets of DAF-16 may be instrumental in regulating its indirect targets. Together, our study provides fundamental insights into the transcriptional biology of FOXO/DAF-16 and gene regulation downstream of the IIS pathway.
  • Thumbnail Image
    Item
    A chromatin modifier integrates insulin/IGF-1 signalling and dietary restriction to regulate longevity
    (Blackwell Publishing Ltd, 2016) Singh, A.; Kumar, N.; Matai, L.; Jain, V.; Garg, A.; Mukhopadhyay, A.
    Insulin/IGF-1-like signalling (IIS) and dietary restriction (DR) are the two major modulatory pathways controlling longevity across species. Here, we show that both pathways license a common chromatin modifier, ZFP-1/AF10. The downstream transcription factors of the IIS and select DR pathways, DAF-16/FOXO or PHA-4/FOXA, respectively, both transcriptionally regulate the expression of zfp-1. ZFP-1, in turn, negatively regulates the expression of DAF-16/FOXO and PHA-4/FOXA target genes, apparently forming feed-forward loops that control the amplitude as well as the duration of gene expression. We show that ZFP-1 mediates this regulation by negatively influencing the recruitment of DAF-16/FOXO and PHA-4/FOXA to their target promoters. Consequently, zfp-1 is required for the enhanced longevity observed during DR and on knockdown of IIS. Our data reveal how two distinct sensor pathways control an overlapping set of genes, using different downstream transcription factors, integrating potentially diverse and temporally distinct nutritional situations. ? 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.