Human Genetics And Molecular Medicine - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/107

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Assessment and identification of bioactive metabolites from terrestrial Lyngbya spp. responsible for antioxidant, antifungal, and anticancer activities
    (Institute for Ionics, 2023-09-09T00:00:00) Verma, Shaloo; Suman, Prabhat; Mandal, Somnath; Kumar, Roshan; Sahana, Nandita; Siddiqui, Nahid; Chakdar, Hillol
    Lyngbya from fresh and marine water produces an array of pharmaceutically bioactive therapeutic compounds. However, Lyngbya from agricultural soil is still poorly investigated. Hence, in this study, the bioactive potential of different Lyngbya spp. extract was explored. Intracellular petroleum ether extract of L. hieronymusii K81 showed the highest phenolic content (626.22 � 0.65 ?g GAEs g?1 FW), while intracellular ethyl acetate extract of L. aestuarii K97 (74.02 � 0.002 mg QEs g?1 FW) showed highest flavonoid content. Highest free radical scavenging activity in terms of ABTS�+ was recorded in intracellular methanolic extract of Lyngbya sp. K5 (97.85 � 0.068%), followed by L. wollei K80 (97.22 � 0.059%) while highest DPPH� radical scavenging activity observed by intracellular acetone extract of Lyngbya sp. K5 (54.59 � 0.165%). All the extracts also showed variable degrees of antifungal activities against Fusarium udum, F. oxysporum ciceris, Colletotrichum capsici, and Rhizoctonia solani. Further, extract of L. wollei K80 and L. aestuarii K97 showed potential anticancer activities against MCF7 (breast cancer) cell lines. GC-MS analyses of intracellular methanolic extract of L. wollei K80 showed the dominance of PUFAs with 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z) as the most abundant bioactive compound. On the other hand, the extracellular ethyl acetate extract of L. aestuarii K97 was rich in alkanes and alkenes with 1-hexyl-2-nitrocyclohexane as the most predominant compound. Extracts of Lyngbya spp. rich in novel secondary metabolites such as PUFAs, alkanes, and alkenes can be further explored as an alternative and low-cost antioxidant and potential apoptogens for cancer therapy. � 2023, The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.
  • Item
    Electro-organic synthesis of C-5 sulfenylated amino uracils: Optimization and exploring topoisomerase-I based anti-cancer profile
    (Academic Press Inc., 2023-06-10T00:00:00) Rani, Payal; Chahal, Sandhya; Kumar, Roshan; Mayank; Kumar, Parvin; Negi, Arvind; Singh, Rajvir; Kumar, Sudhir; Kataria, Ramesh; Joshi, Gaurav; Sindhu, Jayant
    Cancer is spreading worldwide and is one of the leading causes of death. The use of existing chemotherapeutic agents is frequently limited due to side effects. As a result, it is critical to investigate new agents for cancer treatment. In this context, we developed an electrochemical method for the synthesis of a series of thiol-linked pyrimidine derivatives (3a-3p) and explored their anti-cancer potential. The biological profile of the synthesized compounds was evaluated against breast (MDAMB-231 and MCF-7) and colorectal (HCT-116) cancer cell lines. 3b and 3d emerged to be the most potent agents, with IC50 values ranging between 0.98 to 2.45 �M. Target delineation studies followed by secondary anticancer parameters were evaluated for most potent compounds, 3b and 3d. The analysis revealed compounds possess DNA intercalation potential and selective inhibition towards human topoisomerase (hTopo1). The analysis was further corroborated by DNA binding studies and in silico-based molecular modeling studies that validated the intercalating binding mode between the compounds and the DNA. � 2023 Elsevier Inc.
  • Item
    Common microRNAs in Epilepsy and Migraine: Their Possibility as Can-didates for Biomarkers and Therapeutic Targets during Comorbid Onset of Both Conditions
    (Bentham Science Publishers, 2022-04-27T00:00:00) Ludhiadch, Abhilash; Bhardwaj, Nidhi; Gotra, Palvi; Kumar, Roshan; Munshi, Anjana
    Epilepsy and migraine are chronic neurological disorders with shared clinical as well as pathophysiological mechanisms. Epileptic patients are at a higher risk of developing migraine compared to normal individuals and vice versa. Several genetic and environmental risk factors have been reported to be associated with the development of both diseases. Previous studies have already estab-lished standard genetic markers involved in various pathways implicated in the pathogenesis of both these comorbid conditions. In addition to genetic markers, epigenetic markers have also been found to be involved in the pathogenesis of epilepsy and migraine. Among the epigenetic markers, miRNAs have been explored at length and have emerged as significant players in regulating the expression of their target genes. miRNAs like miR-22, miR-34a, miR-155, miR-211, and Let-7b play a significant role in neuronal differentiation and seem to be associated with epilepsy and migraine as comorbid conditions. However, the exact shared mechanisms underlying the role of these miRNAs in these comorbid conditions are still unclear. The current review has been compiled with an aim to explore common microRNAs targeting the genes involved in shared molecular pathways leading to epilepsy and migraine as comorbid conditions. The new class of ncRNAs, i.e., tRNA transfer fragments, are also discussed. In addition, their role as potential biomarkers and therapeutic targets has also been eval-uated. However, limitations exist, and based on the current literature available, only a few microRNAs seem to be involved in the pathogenesis of both these disorders. � 2023 Bentham Science Publishers.