Human Genetics And Molecular Medicine - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/107
Browse
5 results
Search Results
Item Nanotheranostics revolutionizing neurodegenerative diseases: From precision diagnosis to targeted therapies(Editions de Sante, 2023-10-16T00:00:00) Joshi, Riya; Missong, Hemi; Mishra, Jayapriya; Kaur, Satinder; Saini, Sumant; Kandimalla, Ramesh; Reddy, P. Hemachandra; Babu, Arockia; Bhatti, Gurjit Kaur; Bhatti, Jasvinder SinghNeurodegenerative disorders pose a significant burden on global healthcare systems, and the development of effective therapeutics and diagnostics remains a critical challenge. Nanotheranostics, the integration of nanotechnology-based diagnostic and therapeutic modalities, has emerged as a promising strategy to address these challenges. This review article provides a comprehensive analysis of the latest advancements in nanotheranostics for the treatment and monitoring of neurological disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The application of targeted drug delivery systems, gene therapy, and non-invasive imaging techniques are explored in-depth, highlighting the potential of nanotheranostics to revolutionize the management of neurological disorders. The article delves into the design and synthesis of various nanocarriers, such as liposomes, dendrimers, and polymeric nanoparticles, which enable the targeted delivery of therapeutic agents across the blood-brain barrier. Gene therapy approaches, including CRISPR/Cas9 and RNA interference demonstrating the potential of nanotheranostics to enable precise genetic modifications in the treatment of neurological disorders. Additionally, non-invasive imaging techniques, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), are examined in the context of their integration with nanotheranostics for real-time monitoring of treatment efficacy and disease progression. The review also identifies current challenges and limitations in the field of nanotheranostics, such as toxicity, immunogenicity, and issues with large-scale production. Furthermore, it outlines future research directions and potential strategies to overcome these limitations, paving the way for the clinical translation of nanotheranostics as next-generation therapeutics in neurological disorders. � 2023Item Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease(Elsevier B.V., 2023-06-29T00:00:00) Bhatti, Jasvinder Singh; Kaur, Satinder; Mishra, Jayapriya; Dibbanti, Harikrishnareddy; Singh, Arti; Reddy, Arubala P.; Bhatti, Gurjit Kaur; Reddy, P. HemachandraAlzheimer's disease (AD) is a neurodegenerative disease that manifests its pathology through synaptic damage, mitochondrial abnormalities, microRNA deregulation, hormonal imbalance, increased astrocytes & microglia, accumulation of amyloid ? (A?) and phosphorylated Tau in the brains of AD patients. Despite extensive research, the effective treatment of AD is still unknown. Tau hyperphosphorylation and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline in patients with AD. Mitochondrial dysfunction is evidenced by enhanced mitochondrial fragmentation, impaired mitochondrial dynamics, mitochondrial biogenesis and defective mitophagy in AD. Hence, targeting mitochondrial proteins might be a promising therapeutic strategy in treating AD. Recently, dynamin-related protein 1 (Drp1), a mitochondrial fission protein, has gained attention due to its interactions with A? and hyperphosphorylated Tau, altering mitochondrial morphology, dynamics, and bioenergetics. These interactions affect ATP production in mitochondria. A reduction in Drp1 GTPase activity protects against neurodegeneration in AD models. This article provides a comprehensive overview of Drp1's involvement in oxidative damage, apoptosis, mitophagy, and axonal transport of mitochondria. We also highlighted the interaction of Drp1 with A? and Tau, which may contribute to AD progression. In conclusion, targeting Drp1 could be a potential therapeutic approach for preventing AD pathology. � 2023Item Stem cells in the treatment of Alzheimer's disease � Promises and pitfalls(Elsevier B.V., 2023-04-06T00:00:00) Bhatti, Jasvinder Singh; Khullar, Naina; Mishra, Jayapriya; Kaur, Satinder; Sehrawat, Abhishek; Sharma, Eva; Bhatti, Gurjit Kaur; Selman, Ashley; Reddy, P. HemachandraAlzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-? and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology. � 2023 Elsevier B.V.Item Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders(Elsevier Inc., 2022-11-04T00:00:00) Mishra, Jayapriya; Bhatti, Gurjit Kaur; Sehrawat, Abhishek; Singh, Charan; Singh, Arti; Reddy, Arubala P.; Reddy, P. Hemachandra; Bhatti, Jasvinder SinghThe high prevalence of neurodegenerative diseases has become a major public health challenge and is associated with a tremendous burden on individuals, society and federal governments worldwide. Protein misfolding and aggregation are the major pathological hallmarks of several neurodegenerative disorders. The cells have evolved several regulatory mechanisms to deal with aberrant protein folding, namely the classical ubiquitin pathway, where ubiquitination of protein aggregates marks their degradation via lysosome and the novel autophagy or mitophagy pathways. Autophagy is a catabolic process in eukaryotic cells that allows the lysosome to recycle the cell's own contents, such as organelles and proteins, known as autophagic cargo. Their most significant role is to keep cells alive in distressed situations. Mitophagy is also crucial for reducing abnormal protein aggregation and increasing organelle clearance and partly accounts for maintaining cellular homeostasis. Furthermore, substantial data indicate that any disruption in these homeostatic mechanisms leads to the emergence of several age-associated metabolic and neurodegenerative diseases. So, targeting autophagy and mitophagy might be a potential therapeutic strategy for a variety of health conditions. � 2022Item Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives(Elsevier Inc., 2022-04-07T00:00:00) Bhatti, Jasvinder Singh; Sehrawat, Abhishek; Mishra, Jayapriya; Sidhu, Inderpal Singh; Navik, Umashanker; Khullar, Naina; Kumar, Shashank; Bhatti, Gurjit Kaur; Reddy, P. HemachandraType 2 diabetes (T2DM) is a persistent metabolic disorder rising rapidly worldwide. It is characterized by pancreatic insulin resistance and ?-cell dysfunction. Hyperglycemia induced reactive oxygen species (ROS) production and oxidative stress are correlated with the pathogenesis and progression of this metabolic disease. To counteract the harmful effects of ROS, endogenous antioxidants of the body or exogenous antioxidants neutralise it and maintain bodily homeostasis. Under hyperglycemic conditions, the imbalance between the cellular antioxidant system and ROS production results in oxidative stress, which subsequently results in the development of diabetes. These ROS are produced in the endoplasmic reticulum, phagocytic cells and peroxisomes, with the mitochondrial electron transport chain (ETC) playing a pivotal role. The exacerbated ROS production can directly cause structural and functional modifications in proteins, lipids and nucleic acids. It also modulates several intracellular signaling pathways that lead to insulin resistance and impairment of ?-cell function. In addition, the hyperglycemia-induced ROS production contributes to micro- and macro-vascular diabetic complications. Various in-vivo and in-vitro studies have demonstrated the anti-oxidative effects of natural products and their derived bioactive compounds. However, there is conflicting clinical evidence on the beneficial effects of these antioxidant therapies in diabetes prevention. This review article focused on the multifaceted role of oxidative stress caused by ROS overproduction in diabetes and related complications and possible antioxidative therapeutic strategies targeting ROS in this disease. � 2022 Elsevier Inc.