Human Genetics And Molecular Medicine - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/107
Browse
4 results
Search Results
Item Identification of Compounds from Curcuma longa with in Silico Binding Potential against SARS-CoV-2 and Human Host Proteins Involve in Virus Entry and Pathogenesis(Indian Pharmaceutical Association, 2021-12-07T00:00:00) Kumar, S.; Singh, A.K.; Kushwaha, P.P.; Prajapati, Kumari Sunita; Senapati, S.; Mohd, S.; Gupta, S.Severe acute respiratory syndrome coronavirus 2 and associated coronavirus disease 2019 is a newly identified human coronavirus has imposed a serious threat to global health. The rapid transmission of severe acute respiratory syndrome coronavirus 2 and its ability to spread in humans have prompted the development of new approaches for its treatment. Severe acute respiratory syndrome coronavirus 2 requires RNA-dependent RNA polymerases for life cycle propagation and Spike (S)-protein for attachment to the host cell surface receptors. The virus enters the human body with the assistance of a key functional host receptor dipeptidyl peptidase-4 primed by transmembrane serine protease 2 which are putative targets for drug development. We performed screening of 267 compounds from Curcuma longa L. (Zingiberaceae family) against the viral S-protein and RNA-dependent RNA polymerases and host receptor proteins dipeptidyl peptidase-4 and transmembrane serine protease 2 using in silico molecular docking. Compounds C1, ((4Z,6E)-1,5-dihydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-4,6-dien- 3-one) and C6 ((4Z,6E)-1,5-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hepta-4,6- dien-3-one) exhibited tight binding to the S1 domain of the Spike protein than VE607 and with RNAdependent RNA polymerase protein more effectively than ribavirin and remdesivir. These compounds also interacted with the human host proteins dipeptidyl peptidase-4 and transmembrane serine protease 2 with higher efficiency than standard inhibitors sitagliptin and camostat mesylate. The lead compounds showed favorable free binding energy for all the studied protein-ligand complexes in Molecular mechanics/ Generalized born model and solvent accessibility analysis. Besides, other Curcuma longa compounds C14 and C23 exhibited almost similar potential against these target proteins. The structure based optimization and molecular docking studies have provided information on some lead Curcuma longa compounds with probability for advancement in preclinical research. � 2021 Indian Pharmaceutical Association. All rights reserved.Item Association study identified biologically relevant receptor genes with synergistic functions in celiac disease(NLM (Medline), 2019) Banerjee, P; Bhagavatula, S; Sood, A; Midha, V; Thelma, B.K; Senapati, S.Receptors are essential mediators of cellular physiology, which facilitate molecular and cellular cross-talk with the environment. Nearly 20% of the all known celiac disease (CD) genes are receptors by function. We hypothesized that novel biologically relevant susceptibility receptor genes act in synergy in CD pathogenesis. We attempted to identify novel receptor genes in CD by re-analyzing published Illumina Immunochip dense genotype data for a north Indian and a European (Dutch) cohort. North Indian dataset was screened for 269 known receptor genes. Association statistics for SNPs were considered with minor allele frequency >15% and association P ≤ 0.005 to attend desired study power. Identified markers were tested for cross-ethnic replication in a European CD dataset. Markers were analyzed in-silico to explain their functional significance in CD. Six novel SNPs from MOG (rs29231, p = 1.21e-11), GABBR1 (rs3025643, p = 1.60e-7), OR2H2 (rs1233388, p = 0.0002), ABCF1 (rs9262119, p = 0.0005), ADRA1A (rs10102024, p = 0.003), and ACVR2A (rs7560426, p = 0.004) were identified in north Indians, of which three genes namely, GABBR1 (rs3025643, p = 5.38e-8), OR2H2 (rs1233388, p = 3.29e-5) and ABCF1 (rs9262119, p = 0.0002) were replicated in Dutch. Tissue specific functional annotation, potential epigenetic regulation, co-expression, protein-protein interaction and pathway enrichment analyses indicated differential expression and synergistic function of key genes that could alter cellular homeostasis, ubiquitination mediated phagosome pathway and cellular protein processing to contribute for CD. At present multiple therapeutic compounds/drugs are available targeting GABBR1 and ADRA1A, which could be tested for their effectiveness against CD in controlled drug trials.Item Shared and unique common genetic determinants between pediatric and adult celiac disease(BioMed Central Ltd., 2016) Senapati, S.; Sood, A.; Midha, V.; Sood, N.; Sharma, S.; Kumar, L.; Thelma, B.K.Background: Based on age of presentation, celiac disease (CD) is categorised as pediatric CD and adult CD. It however remains unclear if these are genetically and/or phenotypically distinct disorders or just different spectrum of the same disease. We therefore explored the common genetic components underlying pediatric and adult CD in a well characterized north Indian cohort. Methods: A retrospective analysis of children (n = 531) and adult (n = 871) patients with CD between January 2001 and December 2010 was done. The database included basic demographic characteristics, clinical presentations, associated diseases and complications, if any. The genotype dataset was acquired for children (n = 217) and adult CD patients (n = 340) and controls (n = 736) using Immunochip. Association analysis was performed using logistic regression model to identify susceptibility genetic variants. Results: The predominant form of CD was classical CD in both pediatric and adult CD groups. There was remarkable similarity between pediatric and adult CD except for quantitative differences between the two groups such as female preponderance, non-classical presentation, co-occurrence of other autoimmune diseases being more common amongst adult CD. Notably, same HLA-DQ2 and -DQ8 haplotypes were established as the major risk factors in both types of CD. In addition, a few suggestively associated (p < 5 ? 10-4) non-HLA markers were identified of which only ANK3 (rs4948256-A; rs10994257-T) was found to be shared and explain risk for ?45 % of CD patients with HLA allele. Discussion: Overall phenotypic similarity between pediatric and adult CD groups can be explained by contribution of same HLA risk alleles. Different non-HLA genes/loci with minor risk seem to play crucial role in disease onset and extra intestinal manifestation of CD. None of the non-HLA risk variants reached genome-wide significance, however most of them were shown to have functional implication to disease pathogenesis. Functional relevance of our findings needs to be investigated to address clinical heterogeneity of CD. Conclusions: This present study is the first comparative study based on common genetic markers to suggest that CD in pediatric age group and in adults are the spectrum of the same disease with novel and shared genetic risk determinants. Follow-up fine mapping studies with larger study cohorts are warranted for further genetic investigation. ? 2016 The Author(s).Item Alternative pathways for glucose metabolism(Nova Science Publishers, Inc., 2017) Senapati, S.Glucose metabolism through glycolysis is one of the most fundamental biochemical processes that take place in every living cell. Different enzymes involved in glycolysis are well conserved among different organisms. Pyruvic acid is the end product of glycolysis that either enters into the mitochondria to participate in Krebs cycle to generate ATPs or under anaerobic condition get converted into lactate. However, in some tissues pyruvate may convert back to carbohydrates (such as glucose) through gluconeogenesis. Parallel to these basic pathways of glucose metabolism, other alternative pathways also exist to perform specialized functions of cells. Three such major alternative pathways are Pentose phosphate pathway, Glucuronic acid pathway and Entner-Doudoroff pathway. Pentose phosphate pathway is an essential and universal pathway which converts glucose 6-phosphate to ribose 5- phosphate that serves as sole source of pentose sugar for DNA synthesis. Glucose 6-phosphate also serves as primary molecule that enters into Gluconic acid pathway to generate UDP-gluconate which helps in detoxification of foreign chemicals and synthesis of Mucopolysaccharides. Entner-Doudoroff pathway also converts glucose into pyruvate and acts as alternative to glycolysis in lower organisms. These three pathways also produces NADPH/H+ which play significant role in fatty acid metabolism and steroid synthesis. ? 2017 Nova Science Publishers, Inc. All rights reserved.