Human Genetics And Molecular Medicine - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/107
Browse
6 results
Search Results
Item Genetic variations in tumor-suppressor miRNA-encoding genes and their target genes: focus on breast cancer development and possible therapeutic strategies(Springer Science and Business Media Deutschland GmbH, 2023-04-24T00:00:00) Chhichholiya, Yogita; Singh, Harsh Vikram; Singh, Sandeep; Munshi, AnjanaMicroRNAs (miRNAs) negatively affect gene expression by binding to their specific mRNAs resulting in either mRNA destruction or translational repression. The aberrant expression of various miRNAs has been associated with a number of human cancer. Oncogenic or tumor-suppressor miRNAs regulate a variety of pathways involved in the development of breast cancer (BC), including cell proliferation, apoptosis, metastasis, cancer recurrence, and chemoresistance. Variations in miRNA-encoding genes and their target genes lead to dysregulated gene expression resulting in the development and progression of BC. The various therapeutic approaches to treat the disease include chemotherapy, radiation therapy, surgical removal, hormone therapy, chemotherapy, and targeted biological therapy. The purpose of the current review is to explore the genetic variations in tumor-suppressor miRNA-encoding genes and their target genes in association with the disease development and prognosis. The therapeutic interventions targeting the variants for better disease outcomes have also been discussed. � 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.Item Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis(Springer Science and Business Media Deutschland GmbH, 2022-11-28T00:00:00) Tuli, Hardeep Singh; Kaur, Jagjit; Vashishth, Kanupriya; Sak, Katrin; Sharma, Ujjawal; Choudhary, Renuka; Behl, Tapan; Singh, Tejveer; Sharma, Sheetu; Saini, Adesh K.; Dhama, Kuldeep; Varol, Mehmet; Sethi, GautamROS include hydroxyl radicals (HO.), superoxide (O2.), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Common microRNAs in Epilepsy and Migraine: Their Possibility as Can-didates for Biomarkers and Therapeutic Targets during Comorbid Onset of Both Conditions(Bentham Science Publishers, 2022-04-27T00:00:00) Ludhiadch, Abhilash; Bhardwaj, Nidhi; Gotra, Palvi; Kumar, Roshan; Munshi, AnjanaEpilepsy and migraine are chronic neurological disorders with shared clinical as well as pathophysiological mechanisms. Epileptic patients are at a higher risk of developing migraine compared to normal individuals and vice versa. Several genetic and environmental risk factors have been reported to be associated with the development of both diseases. Previous studies have already estab-lished standard genetic markers involved in various pathways implicated in the pathogenesis of both these comorbid conditions. In addition to genetic markers, epigenetic markers have also been found to be involved in the pathogenesis of epilepsy and migraine. Among the epigenetic markers, miRNAs have been explored at length and have emerged as significant players in regulating the expression of their target genes. miRNAs like miR-22, miR-34a, miR-155, miR-211, and Let-7b play a significant role in neuronal differentiation and seem to be associated with epilepsy and migraine as comorbid conditions. However, the exact shared mechanisms underlying the role of these miRNAs in these comorbid conditions are still unclear. The current review has been compiled with an aim to explore common microRNAs targeting the genes involved in shared molecular pathways leading to epilepsy and migraine as comorbid conditions. The new class of ncRNAs, i.e., tRNA transfer fragments, are also discussed. In addition, their role as potential biomarkers and therapeutic targets has also been eval-uated. However, limitations exist, and based on the current literature available, only a few microRNAs seem to be involved in the pathogenesis of both these disorders. � 2023 Bentham Science Publishers.Item SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes(Frontiers Media S.A., 2021-12-02T00:00:00) Chhichholiya, Yogita; Suryan, Aman Kumar; Suman, Prabhat; Munshi, Anjana; Singh, SandeepmiRNAs are fascinating molecular players for gene regulation as individual miRNA can control multiple targets and a single target can be regulated by multiple miRNAs. Loss of miRNA regulated gene expression is often reported to be implicated in various human diseases like diabetes and cancer. Recently, geneticists across the world started reporting single nucleotide polymorphism (SNPs) in seed sequences of miRNAs. Similarly, SNPs are also reported in various target sequences of these miRNAs. Both the scenarios lead to dysregulated gene expression which may result in the progression of diseases. In the present paper, we explore SNPs in various miRNAs and their target sequences reported in various human cancers as well as diabetes. Similarly, we also present evidence of these mutations in various other human diseases. Copyright � 2021 Chhichholiya, Suryan, Suman, Munshi and Singh.Item Combinatorial Effect of DCA and Let-7a on Triple-Negative MDA-MB-231 Cells: A Metabolic Approach of Treatment(SAGE Publications Inc., 2020) Sharma, P; Singh, S.Dichloroacetate (DCA) is a metabolic modulator that inhibits pyruvate dehydrogenase activity and promotes the influx of pyruvate into the tricarboxylic acid cycle for complete oxidation of glucose. DCA stimulates oxidative phosphorylation (OXPHOS) more than glycolysis by altering the morphology of the mitochondria and supports mitochondrial apoptosis. As a consequence, DCA induces apoptosis in cancer cells and inhibits the proliferation of cancer cells. Recently, the role of miRNAs has been reported in regulating gene expression at the transcriptional level and also in reprogramming energy metabolism. In this article, we indicate that DCA treatment leads to the upregulation of let-7a expression, but DCA-induced cancer cell death is independent of let-7a. We observed that the combined effect of DCA and let-7a induces apoptosis, reduces reactive oxygen species generation and autophagy, and stimulates mitochondrial biogenesis. This was later accompanied by stimulation of OXPHOS in combined treatment and was thus involved in metabolic reprogramming of MDA-MB-231 cells. � 2020 Sage Publications.Item miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers(Blackwell Publishing Ltd, 2020) Vasudeva, K; Munshi, A.Stroke is one of the leading causes of death and disability in both developing and developed countries. Biomarkers for stroke and its outcome can greatly facilitate early detection and management of the disease. miRNAs have been explored for their potential as biomarkers for diagnosis, prognosis and brain injury in ischaemic stroke. A substantial body of evidence suggests that miRNAs play key roles in numerous cellular changes following ischaemic stroke including mitochondrial dysfunction, energy failure, cytokine-mediated cytotoxicity, oxidative stress, activation of glial cells, increased intracellular calcium levels inflammatory responses and disruption of the blood�brain barrier (BBB). In addition, targeting specific miRNAs, therapeutic modulation of brain injury and apoptosis can also be achieved. Therefore, the current review has been compiled within an aim to give an overview of the developments exploiting miRNAs at different stages of stroke as prognostic, diagnostic, protective and therapeutic biomarkers. � 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd