Department Of Applied Agriculture
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/18
Browse
12 results
Search Results
Item Food-Based Natural Mitigators of Enzymatic Browning on Fruits and Vegetables: Insights into Active Constituents, Modes of Action, and Challenges(Springer, 2023-10-23T00:00:00) Shevkani, KhetanEnzymatic browning is a major cause of postharvest quality loss in fruits/vegetables. Heat and chemicals are conventionally employed to prevent enzymatic browning. However, the demand for fresh-like fruit/vegetable products processed without chemical additives has shifted the paradigm towards natural antibrowning agents. Consequently, essential oils, hydrosols, honey, and plant extracts have received considerable attention as natural antibrowning agents during the last 4�5�years owing to the ability of their active constituents (flavonoids, phenolic acids, antioxidative peptides, thiol compounds, and/or carboxylic acids) to affect oxidative enzymes by (i) complexing at various sites through hydrogen, van der Waals, ?-sigma/?-? stack, electrostatic, and hydrophobic interactions, (ii) chelating metals at their active sites, and (iii) making conditions unfavourable for their activity as well as due to their ability to behave as membrane integrity promotors, substrate synthesis suppressors, and oxygen quenchers depending on the source, concentration, target fruit/vegetable, and processing conditions. However, their application in fruit/vegetable processing is challenging. For instance, plant extracts display high variability and lower effectiveness than synthetic antibrowning agents, while essential oils and hydrosols exhibit strong odours, limited solubility, and volatility. This article reviews the most recent studies on essential oils, hydrosols, honey, and plant extracts to provide an overview of the modes of action of natural antibrowning agents and highlight challenges associated with their utilisation. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Protein from land�legumes and pulses(Elsevier, 2023-07-06T00:00:00) Shevkani, KhetanLegumes/pulses, once criticized for long cooking time and presence of antinutrients, are now regarded as superfoods packed with several health-benefitting phytochemicals. The abundance of complex carbohydrates in legumes not only contributes to enhanced satiety, reduced glycemic response and increased fecal bulk but also helps promote probiotics in the human gut, making them an ideal food for individuals with diabetes, obesity and/or constipation. Meanwhile, legume phenolics, inositols, phytosterols, saponins, phospholipids and ?-aminobutyric acid exert antioxidative, cardioprotective, anticancer, antiinflammatory and/or kidney stone/polycystic ovary syndrome prevention properties. Nutritionally, legume proteins contain the majority of essential amino acids (including branched-chain amino acids) and complement cereal-based diets for lysine. They also serve as a source of lectins, enzyme inhibitors, lunasin, defensins and bioactive peptides with nutraceutical properties. In addition, they have also been found promising in enhancing the stability of certain foods by reducing microbial load and/or preventing lipid oxidation. Furthermore, legumes have immense importance as a future protein source. Legume protein production is more eco-friendly than animal protein production and can be helpful in climate change adaptability because (1) it requires much lesser resources (land, water, fuel, etc.) and results in less emissions of greenhouse gases, (2) legumes contribute to soil fertility through carbon sequestration and nitrogen fixation, and (3) they can be cultivated in different types of growing systems under relatively unfavorable environmental conditions. However, limited solubility, poor gel-forming properties, lower digestibility than animal proteins and the presence of undesirable beany odors are major challenges in legume protein utilization. Efforts have been taken to improve digestibility and technofunctionality through the application of enzymes and/or process modification. Novel approaches such as extraction of volatiles using supercritical CO2 technology, chemical modifications of proteins and application of lactic acid bacteria and/or yeast are also being explored for mitigating beany odors in legume proteins. � 2023 Elsevier Inc. All rights reserved.Item Antioxidative and antimicrobial properties of pulse proteins and their applications in gluten-free foods and sports nutrition(John Wiley and Sons Inc, 2022-03-07T00:00:00) Shevkani, Khetan; Singh, Narpinder; Patil, Chidanand; Awasthi, Ankit; Paul, MamanPulses are inexpensive and eco-friendly source of biologically active proteins/peptides exhibiting antioxidative and antimicrobial properties. The antimicrobial activity of pulse proteins/peptides is ascribed to their ability to interact with components of bacterial/fungal cells or viral-envelope, while antioxidative effects are the result of absorption/scavenging of free radicals and reactive oxygen species, which depend on amino acid composition/sequence, hydrophobicity and molecular mass and vary with multiple factors, including, protein source, hydrolysing enzyme and conditions employed for hydrolysis. Pulse proteins also are useful for quality improvement of gluten-free (GF) foods to fulfil the increasing demand not only of safe and nutritious but also of acceptable products for people with gluten-related disorders. They contribute technological and sensory quality to GF baked products through providing lysine and improving hydration, viscoelasticity and gas retention, though the production of GF products with quality comparative to wheat-based baked products is challenging. The inclusion of pulse proteins in pastas and noodles reduces their glycaemic index and improves textural and cooking properties. Also, pulse proteins were found to be comparable with animal proteins in enhancing exercise capacity and athletic performance; hence, these may be considered suitable in developing health-promoting plant-based athletic foods. � 2022 Institute of Food Science and Technology.Item Colour, composition, digestibility, functionality and pasting properties of diverse kidney beans (Phaseolus vulgaris) flours(Elsevier B.V., 2022-03-19T00:00:00) Shevkani, Khetan; Kaur, Ravneet; Singh, Narpinder; Hlanze, Dinhle P.The present work evaluated nine diverse kidney bean accessions for colour, composition, digestibility, protein profile, starch crystallinity, techno-functional properties, pasting properties and microstructure with the objective of identifying key attributes affecting their digestibility and functionality. The accessions exhibited dry matter digestibility, resistant starch (RS) content, water absorption capacity, fat absorption capacity, emulsifying activity index (EAI), foaming capacity (FC) and foam stability (FS) of 14.6�47.2%, 32.0�50.5%, 1.7�2.7 g/g, 1.4�1.7 g/g, 50.1�70.1 m2/g, 70.8�98.3% and 82.4�91.3%, respectively. Starch-lipid complexes (SLC), proteins and non-starch carbohydrates contributed to lower starch and dry matter-digestibility. Principal component analysis revealed positive relation of emulsification, foaming and water absorption capacity with proteins, starch, RS and ash-content while negative with crystallinity and amount of lipids, non-starch carbohydrates and digestible starch. Hydration ability of proteins promoted foaming whereas flour with lower vicilins level was less surface active and exhibited the lowest EAI, FC and FS. Pasting temperature related positively with SLC, while average starch granule size was in strong positive relationship with RS content, peak viscosity and breakdown viscosity. The results could be useful for enhanced utilization of kidney beans in different foods. � 2022 The AuthorsItem Structural and functional properties of amaranth starches from residue obtained during protein extraction(Springer, 2021-07-26T00:00:00) Shevkani, Khetan; Singh, Narpinder; Isono, Naoto; Noda, TakahiroThe present study evaluated Amaranthus caudatus (AC) and A. hypochondriacus (AH) starches obtained as coproduct during protein extraction for composition, granule size, amylopectin fine structure, thermal, retrogradation, pasting and dynamic rheological-properties to elucidate structure-function relationships. The starches exhibited unimodal particle size distribution with mean granule size of 1.26�3.12�?m. AC starch with larger granules (mean granule size 3.12�?m) than AH starches (1.26�1.59�?m) gelatinized at lower temperatures (lower DSC transition and pasting temperatures), showed higher paste viscosities and produced more elastic gels (lower tan ? and higher G?). Starch granule size related positively with the proportion of amylopectin chains with DP < 12, paste viscosities and dynamic rheological moduli while negatively with non-starch components, gel tan ? and the proportion of amylopectin chains with DP > 12. Starches with greater proportion of amylopectin chains with DP > 12 showed higher gelatinization temperatures, while shorter chains (DP < 12), lipids and proteins contributed to reduced retrogradation tendencies (lower percent retrogradation). � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Composition, pasting, functional, and microstructural properties of flours from different split dehulled pulses (dhals)(Blackwell Publishing Ltd, 2021-03-28T00:00:00) Shevkani, Khetan; Kaur, Manmeet; Singh, NarpinderThe present study compared flours from six different split dehulled pulses (dhals) with full-fat and defatted soybean flours for color, composition (proximate and mineral), protein molecular weight, microstructure, pasting, and functional properties. In comparison to soybean flours, dhal flours showed higher Fe content, paste viscosities, and bulk density; comparative color properties (L* and b*), aw, Zn content, foaming capacity, and foam stability; but lower emulsifying activity index (EAI), emulsion stability index (ESI), protein content, and ash content. Among different dhal flours, Cicer arietinum showed the highest fat absorption capacity (FAC), EAI, and ESI, while Phaseolus mungo and Pisum sativum flours showed the highest water absorption capacity (WAC) and foaming properties, respectively. Dhal flours also differed for protein molecular weight and starch morphology. Proteins in Vigna unguiculata, P. mungo, and P. aureus flours were high in vicilins of ?130�138�kDa, whereas Pisum sativum, Lens culinaris, and C. arietinum flours contained both vicilins (?135�142kDa) and legumins (?256�332�kDa) as major storage proteins. Principal component analysis revealed negative relation of paste viscosities with protein solubility, lipids, and mineral content while positive with bulk density. Emulsifying properties (EAI and ESI) related positively with FAC, and amount of proteins, lipids, Mn, Cu, K, and Mg, while foaming capacity related positively with WAC and Na content and negatively with protein solubility and concentration of Zn and Fe. Practical applications: Soybean, as flour or meal, is used in food formulation to improve nutritional and sensory properties, but it is listed as a major allergen in foods. The present study provides information on chemical composition and functionality of dhal flours in comparison to defatted and full-fat soy flours, which is useful for partial or complete replacement of soybean with pulse flours. The study also discusses flour characteristics that contribute to functional properties. The results of the present work are useful in identifying pulse flours that can mimic soybean flours/meals for functional properties. � 2021 Wiley Periodicals LLC.Item Food-Based Natural Mitigators of Enzymatic Browning on Fruits and Vegetables: Insights into Active Constituents, Modes of Action, and Challenges(Springer, 2023-10-23T00:00:00) Shevkani, KhetanEnzymatic browning is a major cause of postharvest quality loss in fruits/vegetables. Heat and chemicals are conventionally employed to prevent enzymatic browning. However, the demand for fresh-like fruit/vegetable products processed without chemical additives has shifted the paradigm towards natural antibrowning agents. Consequently, essential oils, hydrosols, honey, and plant extracts have received considerable attention as natural antibrowning agents during the last 4�5�years owing to the ability of their active constituents (flavonoids, phenolic acids, antioxidative peptides, thiol compounds, and/or carboxylic acids) to affect oxidative enzymes by (i) complexing at various sites through hydrogen, van der Waals, ?-sigma/?-? stack, electrostatic, and hydrophobic interactions, (ii) chelating metals at their active sites, and (iii) making conditions unfavourable for their activity as well as due to their ability to behave as membrane integrity promotors, substrate synthesis suppressors, and oxygen quenchers depending on the source, concentration, target fruit/vegetable, and processing conditions. However, their application in fruit/vegetable processing is challenging. For instance, plant extracts display high variability and lower effectiveness than synthetic antibrowning agents, while essential oils and hydrosols exhibit strong odours, limited solubility, and volatility. This article reviews the most recent studies on essential oils, hydrosols, honey, and plant extracts to provide an overview of the modes of action of natural antibrowning agents and highlight challenges associated with their utilisation. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Protein from land�legumes and pulses(Elsevier, 2023-07-06T00:00:00) Shevkani, KhetanLegumes/pulses, once criticized for long cooking time and presence of antinutrients, are now regarded as superfoods packed with several health-benefitting phytochemicals. The abundance of complex carbohydrates in legumes not only contributes to enhanced satiety, reduced glycemic response and increased fecal bulk but also helps promote probiotics in the human gut, making them an ideal food for individuals with diabetes, obesity and/or constipation. Meanwhile, legume phenolics, inositols, phytosterols, saponins, phospholipids and ?-aminobutyric acid exert antioxidative, cardioprotective, anticancer, antiinflammatory and/or kidney stone/polycystic ovary syndrome prevention properties. Nutritionally, legume proteins contain the majority of essential amino acids (including branched-chain amino acids) and complement cereal-based diets for lysine. They also serve as a source of lectins, enzyme inhibitors, lunasin, defensins and bioactive peptides with nutraceutical properties. In addition, they have also been found promising in enhancing the stability of certain foods by reducing microbial load and/or preventing lipid oxidation. Furthermore, legumes have immense importance as a future protein source. Legume protein production is more eco-friendly than animal protein production and can be helpful in climate change adaptability because (1) it requires much lesser resources (land, water, fuel, etc.) and results in less emissions of greenhouse gases, (2) legumes contribute to soil fertility through carbon sequestration and nitrogen fixation, and (3) they can be cultivated in different types of growing systems under relatively unfavorable environmental conditions. However, limited solubility, poor gel-forming properties, lower digestibility than animal proteins and the presence of undesirable beany odors are major challenges in legume protein utilization. Efforts have been taken to improve digestibility and technofunctionality through the application of enzymes and/or process modification. Novel approaches such as extraction of volatiles using supercritical CO2 technology, chemical modifications of proteins and application of lactic acid bacteria and/or yeast are also being explored for mitigating beany odors in legume proteins. � 2023 Elsevier Inc. All rights reserved.Item Colour, composition, digestibility, functionality and pasting properties of diverse kidney beans (Phaseolus vulgaris) flours(Elsevier B.V., 2022-03-19T00:00:00) Shevkani, Khetan; Kaur, Ravneet; Singh, Narpinder; Hlanze, Dinhle P.The present work evaluated nine diverse kidney bean accessions for colour, composition, digestibility, protein profile, starch crystallinity, techno-functional properties, pasting properties and microstructure with the objective of identifying key attributes affecting their digestibility and functionality. The accessions exhibited dry matter digestibility, resistant starch (RS) content, water absorption capacity, fat absorption capacity, emulsifying activity index (EAI), foaming capacity (FC) and foam stability (FS) of 14.6�47.2%, 32.0�50.5%, 1.7�2.7 g/g, 1.4�1.7 g/g, 50.1�70.1 m2/g, 70.8�98.3% and 82.4�91.3%, respectively. Starch-lipid complexes (SLC), proteins and non-starch carbohydrates contributed to lower starch and dry matter-digestibility. Principal component analysis revealed positive relation of emulsification, foaming and water absorption capacity with proteins, starch, RS and ash-content while negative with crystallinity and amount of lipids, non-starch carbohydrates and digestible starch. Hydration ability of proteins promoted foaming whereas flour with lower vicilins level was less surface active and exhibited the lowest EAI, FC and FS. Pasting temperature related positively with SLC, while average starch granule size was in strong positive relationship with RS content, peak viscosity and breakdown viscosity. The results could be useful for enhanced utilization of kidney beans in different foods. � 2022 The AuthorsItem Antioxidative and antimicrobial properties of pulse proteins and their applications in gluten-free foods and sports nutrition(John Wiley and Sons Inc, 2022-03-07T00:00:00) Shevkani, Khetan; Singh, Narpinder; Patil, Chidanand; Awasthi, Ankit; Paul, MamanPulses are inexpensive and eco-friendly source of biologically active proteins/peptides exhibiting antioxidative and antimicrobial properties. The antimicrobial activity of pulse proteins/peptides is ascribed to their ability to interact with components of bacterial/fungal cells or viral-envelope, while antioxidative effects are the result of absorption/scavenging of free radicals and reactive oxygen species, which depend on amino acid composition/sequence, hydrophobicity and molecular mass and vary with multiple factors, including, protein source, hydrolysing enzyme and conditions employed for hydrolysis. Pulse proteins also are useful for quality improvement of gluten-free (GF) foods to fulfil the increasing demand not only of safe and nutritious but also of acceptable products for people with gluten-related disorders. They contribute technological and sensory quality to GF baked products through providing lysine and improving hydration, viscoelasticity and gas retention, though the production of GF products with quality comparative to wheat-based baked products is challenging. The inclusion of pulse proteins in pastas and noodles reduces their glycaemic index and improves textural and cooking properties. Also, pulse proteins were found to be comparable with animal proteins in enhancing exercise capacity and athletic performance; hence, these may be considered suitable in developing health-promoting plant-based athletic foods. � 2022 Institute of Food Science and Technology.