Administration
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/1
Browse
2 results
Search Results
Item Comparative cyto- and genotoxicity of 900 MHz and 1800 MHz electromagnetic field radiations in root meristems of Allium cepa(Academic Press, 2020) Kumar A.; Kaur S.; Chandel S.; Singh H.P.; Batish D.R.; Kohli R.K.In the last few decades, tremendous increase in the use of wireless electronic gadgets, particularly the cell phones, has significantly enhanced the levels of electromagnetic field radiations (EMF-r) in the environment. Therefore, it is pertinent to study the effect of these radiations on biological systems including plants. We investigated comparative cytotoxic and DNA damaging effects of 900 and 1800 MHz EMF-r in Allium cepa (onion) root meristematic cells in terms of mitotic index (MI), chromosomal aberrations (CAs) and single cell gel electrophoresis (comet assay). Onion bulbs were subjected to 900 and 1800 MHz (at power densities 261 ± 8.50 mW m?2 and 332 ± 10.36 mW m?2, respectively) of EMF-r for 0.5 h, 1 h, 2 h, and 4 h. Root length declined by 13.2% and 12.3%, whereas root thickness was increased by 46.7% and 48.3% after 4 h exposure to 900 MHz and 1800 MHz, respectively. Cytogenetic studies exhibited clastogenic effect of EMF-r as depicted by increased CAs and MI. MI increased by 36% and 53% after 2 and 4 h exposure to 900 MHz EMF-r, whereas it increased by 41% and 67% in response to 1800 MHz EMF-r. Aberration index was increased by 41%–266% and 14%–257% during 0.5–4 h of exposure to 900 MHz and 1800 MHz, respectively, over the control. EMF-r exposure decreased % head DNA (DNAH) and increased % tail DNA (DNAT) and olive tail moment (OTM) at both 900 and 1800 EMF-r. In 4 h exposure treatments, head DNA (%) declined by 19% and 23% at 900 MHz and 1800 MHz, respectively. DNAT and OTM were increased by 2.3 and 3.7 fold upon exposure to 900 MHz EMF-r over that in the control, whereas 2.8 and 5.8 fold increase was observed in response to 1800 MHz EMF-r exposure for 4 h and the difference was statistically significant. The study concludes that EMF-r in the communication range (900 and 1800 MHz) adversely affect root meristems in plants and induce cytotoxic and DNA damage. EMF-r induced DNA damage was more pronounced at 1800 MHz than that at 900 MHz.Item Exposure to mobile phone radiations at 2350 MHz incites cyto- and genotoxic effects in root meristems of Allium cepa(BioMed Central Ltd., 2019) Chandel, S; Kaur, S; Issa, M; Singh, H.P; Batish, D.R; Kohli, R.K.Background: The exponential increase of electromagnetic field radiations (EMF-r) in the natural environment has raked up the controversies regarding their biological effects. Concern regarding the putative capacity of EMF-r to affect living beings has been growing due to the ongoing elevation in the use of high frequency EMF-r in communication systems, e.g. Mobile phones. Methods: In the present study, we tried to examine the cyto- and genotoxic potential of mobile phone EMF-r at 2350 MHz using onions (Allium cepa L.). Fresh adventitious onion roots were exposed to continuous EMF-r at 2350 MHz for different time periods (1 h, 2 h and 4 h). The evaluation of cytotoxicity was done in terms of mitotic index (MI), phase index and chromosomal aberrations. Genotoxicity was investigated employing comet assay in terms of changes in % HDNA (head DNA) and % TDNA (tail DNA), TM (tail moment) and OTM (olive tail moment). Data were analyzed using one-way ANOVA and mean values were separated using post hoc Tukey's test. Results: The results manifested a significant increase of MI and chromosomal aberrations (%) upon 4 h, and ≥ 2 h of exposure, respectively, as compared to the control. No specific changes in phase index in response to EMF-r exposure were observed. The % HDNA and % TDNA values exhibited significant changes in contrast to that of control upon 2 h and 4 h of exposure, respectively. However, TM and OTM did not change significantly. Conclusions: Our results infer that continuous exposures of radiofrequency EMF-r (2350 MHz) for long durations have a potential of inciting cyto- and genotoxic effects in onion root meristems. © 2019 Springer Nature Switzerland AG.