Department Of Pharmacology

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/108

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Trans-cinnamaldehyde mitigates rotenone-induced neurotoxicity via inhibiting oxidative stress in rats
    (Elsevier B.V., 2022-12-21T00:00:00) Kumar, Sandeep; Kumar, Sachin; Arthur, Richmond; Kumar, Puneet
    Background: The second most prevalent age-related brain condition, Parkinson's disease (PD) is characterised by the loss of neurons in the substantia nigra pars compacta (SNpc). It is associated with symptoms like bradykinesia, stiffness, tremor, and impaired postural responses. Motor dysfunction, and neurochemical imbalance, are involved in the pathophysiology of PD. It has been hypothesised that trans cinnamaldehyde (TCA) a component of Traditional Chinese Medicine (TCM) can ameliorate Parkinson-like symptoms by altering the levels of different biochemical markers and reverse motor impairments. This research sought to determine the neuroprotective effect of TCA against the neurotoxicity caused by rotenone. Basic Procedure: Rotenone (1.5 mg/kg/day; s.c. for 35 days) was given to rats to induce Parkinson-like symptoms. TCA (5, 10, and 20 mg/kg) and concomitant treatment of TCA (5 mg/kg) with L-NAME (10 mg/kg) were given one hour prior to rotenone administration. Every week until the 35th day, behavioral parameters (muscle coordination, spontaneous motor movement and gait abnormalities) were assessed using rotarod, actophotometer, and narrow beam apparatus respectfully. Rats were decapitated on the 35th day, the striatum and cortex were isolated for biochemical tests. Main findings: Rotenone treatment reduced body weight, altered motor coordination and reduced the oxidative defense system. Treatment with TCA significantly improved the alterations in antioxidant levels as well as behavioral parameters. Furthermore, L-NAME (nitric oxide synthase inhibitor) in combination with TCA had a more significant effect as compared to TCA alone, signifying a possible drug interaction. Principal conclusion: TCA could be employed as an adjuvant in PD management. � 2022 The Authors
  • Item
    The beneficial effect of rice bran extract against rotenone-induced experimental parkinson�s disease in rats
    (Bentham Science Publishers, 2021-02-12T00:00:00) Kumar, Sachin; Kumar, Puneet
    Background: Neurodegenerative diseases have become an increasing cause of various disabilities worldwide, followed by aging, including Parkinson�s disease (PD). Parkinson�s disease is a degenerative brain disorder distinguished by growing motor & non-motor failure due to the de-generation of medium-sized spiked neurons in the striatum region. Rotenone is often employed to originate the animal model of PD. It is a powerful blocker of mitochondrial complex-I, mitochon-drial electron transport chain that reliably produces Parkinsonism-like symptoms in rats. Rice bran (RB) is very rich in polyunsaturated fatty acids (PUFA) and nutritionally beneficial compounds, such as ?-oryzanol, tocopherols, and tocotrienols and sterols are believed to have favorable out-comes on oxidative stress & mitochondrial function. Objective: The present study has been designed to explore RB extract�s effect against rotenone-in-duced neurotoxicity in rats. Methods: In the present study, Rotenone (2 mg/kg, s.c) was administered systemically for 28 days. The hexane extract of RB was prepared using Soxhlation. Hexane extract (250 & 500 mg/kg) was administered per oral for 28 days in rotenone-treated groups. Behavioral parameters (grip strength, motor coordination, locomotion, and catalepsy) were conducted on the 7th, 14th, 21st, and 28th day. Animals were sacrificed on the 29th day for biochemical estimation in the striatum and cortex. Results: This study demonstrates significant alteration in behavioral parameters, oxidative burden (increased lipid peroxidation, nitrite concentration, and decreased glutathione, catalase, SOD) in rotenone-treated animals. Administration of hexane extract of RB prevented the behavioral, biochemical alterations induced by rotenone. The current research has been sketched to inspect RB ex-tract�s effect against rotenone-developed neurotoxicity in rats. Conclusion: The findings support that PD is associated with impairments in motor activity. The results also suggest that the nutraceutical rice bran that contains ?-oryzanol, Vitamin-E, ferulic acid etc., may underlie the adjuvant susceptibility towards rotenone-induced PD in experimental rats. � 2021 Bentham Science Publishers.