Department Of Chemistry
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/33
Browse
10 results
Search Results
Item Bifunctional electrochemical OER and HER activity of Ta2O5 nanoparticles over Fe2O3 nanoparticles(Royal Society of Chemistry, 2023-08-23T00:00:00) Ahmed, Imtiaz; Burman, Vishal; Biswas, Rathindranath; Roy, Ayan; Sharma, Rohit; Haldar, Krishna KantaHydrogen production via electrocatalytic water splitting offers encouraging innovations for sustainable and clean energy production as an alternative to conventional energy sources. The improvement of extraordinarily dynamic electrocatalysts is of great interest for work on the performance of gas generation, which is firmly blocked due to the sluggish kinetics of the oxygen evolution reaction (OER). The development of highly efficient base metal catalysts for electrochemical hydrogen and oxygen evolution reactions (HER and OER) is a challenging and promising task. In the present work, a particle over particles of Fe2O3 and Ta2O5 was successfully produced by hydrothermal treatment. The prepared composite shows promising catalytic performance when used as an electrochemical catalyst for OER and HER in alkaline and acidic electrolytes with low overpotentials of 231 and 201 mV at 10 mV cm?2, small Tafel slopes of 71 and 135 mV dec?1, respectively, and good stability properties. The calculated electrochemical surface area (ECSA) for composites is five times higher than that of the original oxides. The result of the OER is significantly better than that of commercial IrO2 catalysts and offers a promising direction for the development of water-splitting catalysts. � 2023 The Royal Society of Chemistry.Item Bio-assisted Synthesis of Au/Rh Nanostructure Electrocatalysts for Hydrogen Evolution and Methanol Oxidation Reactions: Composition Matters!(American Chemical Society, 2023-08-11T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Biswas, Sayani; Mondal, Krishnakanta; Haldar, Krishna KantaIn the field of catalysis, bimetallic nanostructures have attracted much interest. Here, we discuss the effect of Au/Rh bimetallic composition-tuned nanostructure and electrocatalytic activity. A simple bio-assisted technique was used to fabricate multiple Au:Rh nanoplate ratios (25:75, 50:50, and 75:25). XRD and XPS studies show that both Au and Rh phases coexist in a bimetallic nanostructure, and electron microscopy confirms the formation of a triangle-shaped nanoplate. Au0.25Rh0.75 exhibited the maximum catalytic activity and good stability for hydrogen evolution reaction (HER) with an overpotential of 105 mV at a current density of 10 mA/cm2. On the other hand, Au0.50Rh0.50 exhibits a higher activity for methanol oxidation reaction (MOR) compared to the other compositions. Theoretical studies indicate that the electrocatalytic enhancement obtained for both HER and MOR relies on electronic modification effects of the surface, with the overall reaction energy profile being optimized due to Au/Rh d-band mixing. � 2023 American Chemical Society.Item Coupling Nonstoichiometric Zn0.76Co0.24S with NiCo2S4Composite Nanoflowers for Efficient Synergistic Electrocatalytic Oxygen and Hydrogen Evolution Reactions(American Chemical Society, 2022-12-15T00:00:00) Biswas, Rathindranath; Thakur, Pooja; Ahmed, Imtiaz; Rom, Tanmay; Ali, Mir Sahidul; Patil, Ranjit A.; Kumar, Bhupender; Som, Shubham; Chopra, Deepak; Paul, Avijit Kumar; Ma, Yuan-Ron; Haldar, Krishna KantaTransition-metal sulfide-based composite nanomaterials have garnered extensive interest not only for their unique morphological architectures but also for exploring as a noble-metal-free cost-effective, durable, and highly stable catalyst for electrochemical water splitting. In this work, we synthesized in situ nonstoichiometric Zn0.76Co0.24S with NiCo2S4binary composite flowers (Zn0.76Co0.24S/NiCo2S4) in one step by thermal decomposition of Zn2[PDTC]4and Ni[PDTC]2complexes by a solvothermal process in a nonaqueous medium from their molecular precursor, and their potential application in electrochemical oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was investigated. Field-emission scanning electron microscopy and transmission electron microscopy analyses revealed the flower-shaped morphology of as-synthesized Zn0.76Co0.24S/NiCo2S4. Again, the structural and chemical compositions were confirmed through powder X-ray diffraction and X-ray photoelectron spectroscopy studies, respectively. The as-obtained 3D flower-type Zn0.76Co0.24S/NiCo2S4nanostructure was further subject to electrochemical OER and HER in alkaline and acidic media, respectively. Zn0.76Co0.24S/NiCo2S4showed low overpotential values of 248 mV (Tafel slope, 85 mV dec-1) and 141 mV (Tafel slope, 79 mV dec-1) for OER and HER activities, respectively, due to the synergistic effects of Zn0.76Co0.24S and NiCo2S4. Several long-term stability tests also affirmed that the Zn0.76Co0.24S/NiCo2S4composite nanostructure is a highly stable and efficient electrocatalyst toward OER and HER activities as compared to the recently reported superior bifunctional electrocatalysts as well as state-of-the-art materials. � 2023 American Chemical Society. All rights reserved.Item Green synthesis of hybrid papain/Ni3(PO4)2 rods electrocatalyst for enhanced oxygen evolution reaction(Royal Society of Chemistry, 2022-10-21T00:00:00) Ahmed, Imtiaz; Biswas, Rathindranath; Singh, Harjinder; Patil, Ranjit A.; Varshney, Rohit; Patra, Debabrata; Ma, Yuan-Ron; Haldar, Krishna KantaHydrogen production using electrocatalytic water splitting provides encouraging innovations for enduring and clean energy generation as an option in contrast to traditional energy sources. Improvement in exceptionally dynamic electrocatalysts is of tremendous interest for work on the proficiency of gas generation, which has been emphatically blocked because of the sluggish kinetics of the oxygen evolution reaction (OER). We have synthesized a noble rod-shaped papain/Ni3(PO4)2 catalyst, which was further explored for electrocatalytic OER activity. An environmentally benign approach was applied to prepare binary papain/Ni3(PO4)2 in the presence of papain obtained from green papaya fruit. The yield of Ni3(PO4)2 rod structures could be controlled by varying the amount of papain extract during reaction conditions. The morphology and structural properties of the biogenic papain/Ni3(PO4)2 electrocatalyst were investigated with various microscopic and spectroscopic techniques, for example, FE-SEM, XRD, XPS, and FTIR. To show how such a papain/Ni3(PO4)2 hybrid structure could deliver more remarkable electrocatalytic OER activity, we inspected the correlation between catalytic demonstrations of the papain/Ni3(PO4)2 catalyst and its constituents, and the role of papain on its own was studied during the OER process. A biosynthesised papain/Ni3(PO4)2 catalyst exhibits excellent electrochemical OER performance with the smallest overpotentials of 217 mV, 319 mV and 431 mV in alkaline, neutral and acidic conditions, respectively, at 10 mA cm?2 current density. Transport of ions and electrons is also assisted by the long peptide backbone present in papain, which plays an important role in boosting OER activity. Our results reveal that papain/Ni3(PO4)2 shows better electrocatalytic OER execution along with cyclic stability compared to its different counterparts, owing to synergism-assisted enhancement by several amino acids from papain with metal ions in Ni3(PO4)2 � 2022 The Royal Society of Chemistry.Item Mechanism of Iron Integration into LiMn1.5Ni0.5O4for the Electrocatalytic Oxygen Evolution Reaction(American Chemical Society, 2022-09-14T00:00:00) Ahmed, Imtiaz; Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Singh, Harjinder; Mete, Shouvik; Patil, Ranjit A.; Saha, Monochura; Yadav, Ashok Kumar; Jha, Sambhu Nath; Mondal, Krishnakanta; Singh, Harishchandra; Ma, Yuan-Ron; Haldar, Krishna KantaSpinel-type LiMn1.5Ni0.5O4 has been paid temendrous consideration as an electrode material because of its low cost, high voltage, and stabilized electrochemical performance. Here, we demonstrate the mechanism of iron (Fe) integration into LiMn1.5Ni0.5O4 via solution methods followed by calcination at a high temparature, as an efficient electrocatalyst for water splitting. Various microscopic and structural characterizations of the crystal structure affirmed the integration of Fe into the LiMn1.5Ni0.5O4 lattice and the constitution of the cubic LiMn1.38Fe0.12Ni0.5O4 crystal. Local structure analysis around Fe by extended X-ray absorption fine structure (EXAFS) showed Fe3+ ions in a six-coordinated octahedral environment, demonstrating incorporation of Fe as a substitute at the Mn site in the LiMn1.5Ni0.5O4 host. EXAFS also confirmed that the perfectly ordered LiMn1.5Ni0.5O4 spinel structure becomes disturbed by the fractional cationic substitution and also stabilizes the LiMn1.5Ni0.5O4 structure with structural disorder of the Ni2+ and Mn4+ ions in the 16d octahedral sites by Fe2+ and Fe3+ ions. However, we have found that Mn3+ ion production from the redox reaction between Mn4+ and Fe2+ influences the electronic conductivity significantly, resulting in improved electrochemical oxygen evolution reaction (OER) activity for the LiMn1.38Fe0.12Ni0.5O4 structure. Surface-enhanced Fe in LiMn1.38Fe0.12Ni0.5O4 serves as the electrocatalytic active site for OER, which was verified by the density functional theory study. � 2022 American Chemical Society.Item Vanadate Encapsulated Polyoxoborate Framework with [V12B18] Clusters: An Efficient Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions(American Chemical Society, 2022-07-11T00:00:00) Rom, Tanmay; Biswas, Rathindranath; Haldar, Krishna Kanta; Saha, Uttam; Rayaprol, Sudhindra; Paul, Avijit KumarWidespread contemporary attention has grown over the years in the search for a new functional and robust inorganic framework system with the advent of exciting applications. Herein, a facile strategy has been demonstrated for developing noble-metal-free bifunctional electrocatalysts by successfully preparing a polyoxovanadoborate framework compound, i.e., [Na10(H2O)18][(VO)12(?3-OH)6(B3O7)6]�5H2O, i.e., NVBO-I. Anionic vanadoborate clusters are interconnected through a cationic sodium aquated chain to form a three-dimensional framework structure. The compound exhibits remarkable bifunctional activity for oxygen and hydrogen evolution reactions over many well-engineered and state-of-art electrocatalysts under a similar catalytic environment. � 2022 American Chemical Society.Item DNA Origami-Templated Bimetallic Core-Shell Nanostructures for Enhanced Oxygen Evolution Reaction(American Chemical Society, 2022-04-15T00:00:00) Kaur, Gagandeep; Biswas, Rathindranath; Haldar, Krishna Kanta; Sen, TapasiHydrogen generation through electrocatalytic water splitting offers promising technology for sustainable and clean energy production as an alternative to conventional energy sources. The development of highly active electrocatalysts is of immense interest for improving the efficiency of gas evolution, which is strongly hindered due to the sluggish kinetics of oxygen evolution reaction (OER). Herein, we present the design of Ag-coated Au nanostar (core-shell-type Au@Ag nanostar) monomer structures assembled on rectangular DNA origami and study their electrocatalytic activities through OER, which remains unexplored. Our designed DNA origami-templated bimetallic nanostar catalyst showed excellent OER activity and high stability without using any external binder and exhibited a current density of 10 mA cm-2at a low overpotential of 266 mV, which was smaller than those of ss-DNA-functionalized Au@Ag nanostars and DNA origami-templated pure Au nanostars. Our results reveal that DNA origami-assembled core-shell Au@Ag nanostars show better electrocatalytic performance as compared to pure-core Au nanostars immobilized on DNA origami, owing to the presence of a highly conductive Ag layer. Such controlled assembly of bimetallic nanostructures on a DNA origami template can provide additional electrochemical surface area and a higher density of active sites resulting in enhanced electrocatalysis. � 2022 American Chemical Society. All rights reserved.Item Genomic DNA-mediated formation of a porous Cu2(OH)PO4/Co3(PO4)2�8H2O rolling pin shape bifunctional electrocatalyst for water splitting reactions(Royal Society of Chemistry, 2022-01-28T00:00:00) Singh, Harjinder; Ahmed, Imtiaz; Biswas, Rathindranath; Mete, Shouvik; Halder, Krishna Kamal; Banerjee, Biplab; Haldar, Krishna KantaAmong the accessible techniques, the production of hydrogen by electrocatalytic water oxidation is the most established process, which comprises oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we synthesized a genomic DNA-guided porous Cu2(OH)PO4/Co3(PO4)2�8H2O rolling pin shape composite structure in one pot. The nucleation and development of the porous rolling pin shape Cu2(OH)PO4/Co3(PO4)2�8H2O composite was controlled and stabilized by the DNA biomolecules. This porous rolling pin shape composite was explored towards electrocatalytic water oxidation for both OER and HER as a bi-functional catalyst. The as-prepared catalyst exhibited a very high OER and HER activity compared to its various counterparts in the absence of an external binder (such as Nafion). The synergistic effects between Cu and Co metals together with the porous structure of the composite greatly helped in enhancing the catalytic activity. These outcomes undoubtedly demonstrated the beneficial utilization of the genomic DNA-stabilised porous electrocatalyst for OER and HER, which has never been observed. This journal is � The Royal Society of Chemistry.Item Charge Separated One-Dimensional Hybrid Cobalt/Nickel Phosphonate Frameworks: A Facile Approach to Design Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions(American Chemical Society, 2021-09-30T00:00:00) Rom, Tanmay; Biswas, Rathindranath; Haldar, Krishna Kanta; Sarkar, Sourav; Saha, Uttam; Paul, Avijit KumarTwo new organoamine templated one-dimensional transition metal phosphonate compounds are synthesized, and their bifunctional electrocatalytic activities are examined in highly alkaline and acidic media. Compared with state-of-the-art materials, the cobalt phosphonate system is a new fabrication of sustainable and highly efficient catalysts toward electrochemical water splitting systems. � 2021 American Chemical Society. All rights reserved.Item Interfacial Engineering of CuCo2S4/g-C3N4Hybrid Nanorods for Efficient Oxygen Evolution Reaction(American Chemical Society, 2021-07-29T00:00:00) Biswas, Rathindranath; Thakur, Pooja; Kaur, Gagandeep; Som, Shubham; Saha, Monochura; Jhajhria, Vandna; Singh, Harjinder; Ahmed, Imtiaz; Banerjee, Biplab; Chopra, Deepak; Sen, Tapasi; Haldar, Krishna KantaAltering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2. � 2021 American Chemical Society.