Department Of Chemistry
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/33
Browse
6 results
Search Results
Item Tetracycline removal via three-way synergy between pistachio shell powder, zerovalent copper or iron, and peroxymonosulfate activation(Elsevier B.V., 2023-10-20T00:00:00) Kaur, Parminder; Kumar, Atul; Babu, J. Nagendra; Kumar, SandeepPistachio shell powder (PS) immobilized zerovalent iron and zerovalent copper (ZVI@PS and ZVC@PS) were investigated for the tetracycline (TCH) removal via sulfate radical based advanced oxidation process (S-AOP's). Eco-efficient ZVI@PS and ZVC@PS nanocomposite prepared by one-pot redox precipitation method were characterized by using FTIR, XRD, SEM, BET, TGA/DTA, and XPS techniques. The EDX, TGA, and AAS analysis techniques confirmed the loading of 44 % Fe and 40 % Cu (w/w %) onto the pistachio shell biomass in ZVI@PS and ZVC@PS nanocomposites, respectively. This report comprehensively discusses the effect of various contributing factors for the TCH removal via advanced oxidation processes such as catalytic dosage, initial pH, PMS dosage and initial TCH concentrations, etc. Besides that, the role of reactive oxygen species (SO4?,.OH, O2?, and 1O2) in the TCH degradation process was investigated using radical scavenging experiments. A three-way synergistic approach was established between adsorption efficiencies of pistachio shell powder, heterogeneous ZVI or ZVC mediated Fenton-process and enhanced PMS activation process, for the observed enhanced TCH degradations. The observed rate constant (kobs.) values of ZVI@PS-PMS (0.34 min?1) and ZVC@PS-PMS (0.16 min?1) processes for TCH removal suggests that the ZVI@PS was more efficient in TCH removal compared to ZVC@PS. � 2023 The Author(s)Item Evaluation of synergistic adsorption approach for terbinafine removal by cotton shell powder immobilized zerovalent copper: Adsorption kinetics and DFT simulation(Elsevier B.V., 2023-08-30T00:00:00) Kaur, Parminder; Hussain, Khadim; Kumar, Atul; Singh, Janpreet; Nagendra Babu, J.; Kumar, SandeepCotton shell powder (CS), nano zerovalent copper (nZVC) and cotton shell powder immobilized zerovalent copper (ZVC@CS) were evaluated for their adsorption efficiencies towards terbinafine hydrochloride (TBH), an antifungal drug. The nZVC and ZVC@CS synthesized via one pot redox precipitation method were characterized by FTIR, XRD, BET, FESEM and TGA analysis. The TGA and AAS analysis confirmed the loading of nearly 10% of nZVC on cotton shell powder in ZVC@CS. The effect of operational parameters (pH, adsorbent dose, initial drug concentration, time, etc.) determining the extent of terbinafine hydrochloride adsorption on ZVC@CS were investigated to ascertain the optimal experimental conditions to achieve maximum adsorption efficiencies. To investigate the adsorption behavior of TBH on ZVC@CS, the experimental data were fitted for five different adsorption models viz. Langmuir, Freundlich, Temkin, Redlich-Peterson and Hill isotherms. The TBH adsorption data was best fit with Hill isotherm model indicating cooperative sorption of TBH molecules on ZVC@CS surface. Among the five kinetic equations namely the pseudo-first-order (PFO), the pseudo-second-order (PSO), Elovich model, the intraparticle diffusion model, and Boyd kinetic model used to estimate the adsorption mechanism, the PFO kinetic model give best fit with a good correlation for the physisorption of TBH on ZVC@CS composite. The mechanism of the adsorption process was observed to be complex, consisting of both surface adsorption and pore diffusion. However, the Boyd plot confirms external mass transport as the rate limiting step for the adsorption of TBH on ZVC@CS. The synergistic adsorption of TBH on ZVC@CS was hypothesized, and the idea was supported by structure optimization results from DFT studies. The ZVC@CS exhibits equilibrium TBH adsorption efficiency (qmax) of 285.3 mg.g?1, significantly higher than adsorbents used in literature for the TBH removal. It is suggested that ZVC@CS may serve as sustainable adsorbents for the removal of cationic contaminants from acidic medium. � 2023 Elsevier B.V.Item Nanoscale zerovalent copper (nZVC) catalyzed environmental remediation of organic and inorganic contaminants: A review(Elsevier Ltd, 2022-08-08T00:00:00) Kumar, Sandeep; Kaur, Parminder; Brar, Ravinderdeep Singh; Babu, J NagendraOver the past decade, the nano zerovalent copper has emerged as an effective nano-catalyst for the environment remediation processes due to its ease of synthesis, low cost, controllable particle size and high reactivity despite its release during the remediation process and related concentration dependent toxicities. However, the improvised techniques involving the use of supports or immobilizer for the synthesis of Cu0 has significantly increased its stability and motivated the researchers to explore the applicability of Cu0 for the environment remediation processes, which is evident from access to numerous reports on nano zerovalent copper mediated remediation of contaminants. Initially, this review allows the understanding of the various resources used to synthesize zerovalent copper nanomaterial and the structure of Cu0 nanoparticles, followed by focus on the reaction mechanism and the species involved in the contaminant remediation process. The studies comprehensively presented the application of nano zerovalent copper for remediation of organic/inorganic contaminants in combination with various oxidizing and reducing agents under oxic and anoxic conditions. Further, it was evaluated that the immobilizers or support combined with various irradiation sources originates a synergistic effect and have a significant effect on the stability and the redox properties of nZVC in the remediation process. Therefore, the review proposed that the future scope of research should include rigorous focus on deriving an exact mechanism for synergistic effect for the removal of contaminants by supported nZVC. � 2022 The Author(s)Item Nanoscale zerovalent iron (nZVI): An efficient heterogeneous catalyst for environment remediation(De Gruyter, 2022-05-09T00:00:00) Kumar, Sandeep; Brar, Ravinderdeep Singh; Nagendra Babu, J.; Hussain, Khadim[No abstract available]Item Synergistic effect of pistachio shell powder and nano-zerovalent copper for chromium remediation from aqueous solution(Springer Science and Business Media Deutschland GmbH, 2021-07-06T00:00:00) Kumar, Sandeep; Brar, Ravinderdeep Singh; Babu, J. Nagendra; Dahiya, Amarjeet; Saha, Sandip; Kumar, AvneeshPistachio shell powder supported nano-zerovalent copper (ZVC@PS) material prepared by borohydride reduction was characterized using SEM, FTIR, XRD, TGA/DTA, BET, and XPS. SEM, XRD, and XPS revealed the nano-zerovalent copper to consist of a core-shell structure with CuO shell and Cu(0) core with a particle size of 40�100 nm and spherical morphology aggregated on PS biomass. ZVC@PS was found to contain 39% (w/w %) Cu onto the pistachio shell biomass. Batch sorption of Cr(VI) from the aqueous using ZVC@PS was studied and was optimized for dose (0.1�0.5 g/L), initial Cr(VI) concentration(1�20 mg/L), and pH (2�12). Optimized conditions were 0.1 g/L doses of sorbent and pH=3 for Cr(VI) adsorption. Langmuir and Freundlich adsorption isotherm models fitted well to the adsorption behavior of ZVC@PS for Cr(VI) with a pseudo-second-order kinetic behavior. ZVC@PS (0.1g/L) exhibits qmax for Cr(VI) removal up to 110.9 mg/g. XPS and other spectroscopic evidence suggest the adsorption of Cr(VI) by pistachio shell powder, coupled with reductive conversion of Cr(VI) to Cr(III) by ZVC particles to produce a synergistic effect for the efficient remediation of Cr(VI) from aqueous medium. Graphical abstract: [Figure not available: see fulltext.] � 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Effect of imidazolium based ionic liquids on CO-association dynamics and thermodynamic stability of Ferrocytochrome c(Elsevier B.V., 2020-11-05T00:00:00) Garg, Mansi; Kumar, Sandeep; Kaur, Anupamjeet; Goyal, Bhupesh; Kumar, RajeshAnalysis of kinetic and thermodynamic parameters measured for CO-association reaction of Ferrocytochrome c (Ferrocyt c) under variable concentrations of 1-butyl-3-methylimidazolium with varying anion ([Bmim]X) (X = Cl?, I?, Br?, HSO4?) at pH 7 revealed that the low concentration of [Bmim]X (?0.5 M) constrains the CO-association dynamics of Ferrocyt c and typically follows the order: [Bmim]HSO4 > [Bmim]Cl > [Bmim]Br > [Bmim]I. At relatively higher concentrations (>0.5), the chaotropic action of [Bmim]+ dominates which consequently increases the thermal-fluctuations responsible to denature the protein and thus accelerates the speed of CO-association reaction. Analysis of thermal denaturation curves of Ferrocyt c measured at different concentrations of [Bmim]X revealed that the [Bmim]X decreases the thermodynamic stability of protein and typically follows the order: [Bmim]I > [Bmim]Br > [Bmim]Cl > [Bmim]CH3COO > [Bmim]HSO4, demonstrating that the effect of [Bmim]X on thermodynamic stability of protein is not in accordance to Hofmeister series effect of anions because instead of increasing the kosmotropic anion carrying [Bmim]X ([Bmim]CH3COO and [Bmim]HSO4) also decreases the thermodynamic stability of protein. � 2020 Elsevier B.V.