Department Of Chemistry
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/33
Browse
2 results
Search Results
Item Structural and electronic investigation of metal-semiconductor hybrid tetrapod hetero-structures(Springer Verlag, 2017) Haldar, K.K.; Muley, V.Y.; Datar, S.; Patra, A.This article highlights the new electronic properties of tetrapod hetero-structures with metal Au core and semiconductor CdSe arms, which is one of the new classes of hybrid metal-semiconductor nanostructures. From the analysis of XRD, HRTEM, HAADF-STEM images, and EDAX line-scan studies, the growth mechanism of all these hetero-structures is proposed. These findings are important from the basic fundamental aspects of understanding the shape control of hetero-structures. Scanning tunneling spectroscopic study confirms the coulomb staircase-like features near Au which is characteristic of Au nanoparticles and the gap increases as we move the tip towards CdSe. Analysis suggests that the resonance tunneling occurs between valance band edge (conduction band edge) of CdSe and coulomb stairs of Au dot. These tetrapod hetero-structures could pave the way for designing new optical-based materials for developing new challenging photonic devices. ? 2017, Springer International Publishing Switzerland.Item Core size matters! High Raman enhancing core tunable Au/Ag bimetallic core-shell nanoparticles(Springer Verlag, 2017) Paital, D.; Sen, T.; Patra, A.; Haldar, K.K.Bimetallic core-shell nanostructures have been attracted tremendous attention due to their ability to form novel materials with unique chemical, optical, and physical properties. Here, we have studied the influence of core size of Au/Ag bimetallic core-shell nanostructures on the Raman enhancement efficiency with the Raman-active probe methylene blue. The surface-enhanced Raman scattering intensity is increased with increase in the core size of Au/Ag bimetallic core-shell nanoparticles. Interestingly, the enhancement factor is found to be 6.58?נ107 for the Au100/Ag core-shell nanoparticles and allows easy detection of analyte methylene blue. Thus, surface-enhanced Raman scattering properties of the metal nanoparticles are significantly enhanced due to the Au/Ag core-shell structures and the enhancement factor is dependent on the size of the core of the bimetallic nanoparticles. ? 2017, Springer International Publishing AG.