Department Of Chemistry

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/33

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Porous nanorods by stacked NiO nanoparticulate exhibiting corn-like structure for sustainable environmental and energy applications
    (Royal Society of Chemistry, 2023-07-20T00:00:00) Manjunath, Vishesh; Bimli, Santosh; Singh, Diwakar; Biswas, Rathindranath; Didwal, Pravin N.; Haldar, Krishna Kanta; Deshpande, Nishad G.; Bhobe, Preeti A.; Devan, Rupesh S.
    A porous 1D nanostructure provides much shorter electron transport pathways, thereby helping to improve the life cycle of the device and overcome poor ionic and electronic conductivity, interfacial impedance between electrode-electrolyte interface, and low volumetric energy density. In view of this, we report on the feasibility of 1D porous NiO nanorods comprising interlocked NiO nanoparticles as an active electrode for capturing greenhouse CO2, effective supercapacitors, and efficient electrocatalytic water-splitting applications. The nanorods with a size less than 100 nm were formed by stacking cubic crystalline NiO nanoparticles with dimensions less than 10 nm, providing the necessary porosity. The existence of Ni2+ and its octahedral coordination with O2? is corroborated by XPS and EXAFS. The SAXS profile and BET analysis showed 84.731 m2 g?1 surface area for the porous NiO nanorods. The NiO nanorods provided significant surface-area and the active-surface-sites thus yielded a CO2 uptake of 63 mmol g?1 at 273 K via physisorption, a specific-capacitance (CS) of 368 F g?1, along with a retention of 76.84% after 2500 cycles, and worthy electrocatalytic water splitting with an overpotential of 345 and 441 mV for HER and OER activities, respectively. Therefore, the porous 1D NiO as an active electrode shows multifunctionality toward sustainable environmental and energy applications. � 2023 The Royal Society of Chemistry.
  • Item
    Tuning the Morphology of Lanthanum Cobaltite Using the Surfactant-Assisted Hydrothermal Approach for Enhancing Oxygen Evolution Catalysis
    (Springer Science and Business Media Deutschland GmbH, 2022-09-01T00:00:00) Deeksha; Kour, Pawanpreet; Ahmed, Imtiaz; Haldar, Krishna Kanta; Yadav, Kamlesh
    The high consumption rate of fossil fuels to meet the global energy demands attracts the progress of innovative energy storage and conversion systems. Among them, water electrolysis shows major concern because of its great potential to produce clean hydrogen energy. The dawdling dynamics of the oxygen evolution reaction (OER) that occurs on the anode results in the low energy efficiency of the process. Perovskite oxide with transition metal on the B site possesses a high intrinsic as well as extrinsic activity toward OER. However, the low specific surface area restricts their catalytic activity. Here, we report on the synthesis of lanthanum cobaltite (LaCoO3) nanoparticles and bundles of nanorods using glycine and PVP surfactants, respectively, via the hydrothermal method. Structural characterizations confirmed the pure phase synthesis of LaCoO3 perovskite nanomaterials and further their electrocatalytic performance is investigated in an alkaline medium (1 M KOH). The results show that randomly oriented bundles of nanorods (average length 515 nm, average diameter 65 nm) exhibit smaller overpotential (? = 420 mV) at j = 10 mA cm?2 and the Tafel slope (99 mV dec?1) compared with nanoparticles (? = 450 mV and Tafel slope ~ 110 mV dec?1). The dramatically improved OER activity and larger electrochemical surface area (ECSA) of nanorods as compared to nanoparticles are because of the interconnected porous architecture of nanorods. Our work not only highlights the surfactant-assisted hydrothermal approach to synthesize the nanorods but also introduces the effect of a change in morphology on electrochemical activity. � 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
  • Item
    Interfacial design of gold/silver core-shell nanostars for plasmon-enhanced photocatalytic coupling of 4-aminothiophenol
    (Royal Society of Chemistry, 2021-10-02T00:00:00) Kaur, Gagandeep; Tanwar, Swati; Kaur, Vishaldeep; Biswas, Rathindranath; Saini, Sangeeta; Haldar, Krishna Kanta; Sen, Tapasi
    Chemical reactions under mild conditions mediated by localized surface plasmon resonance (LSPR) of metals have emerged as a functional research field. In the present study, we report an interfacial designing procedure for the fabrication of a class of bimetallic hybrid nanomaterials as a profoundly active photocatalyst for the conversion of para-aminothiophenol (PATP) into 4,4?-dimercaptoazobenzene. For this purpose, core-shell nanostars composed of gold (core) and silver (shell) (Au/Ag NSs) were utilized as both surface-enhanced Raman scattering substrate and plasmon driven catalyst under 532 nm laser excitation. Au/Ag NSs with sharp tips display excellent surface-enhanced Raman scattering (SERS) efficiency of PATP. Employing the SERS study, it has been found that PATP rapidly converts into its dimerized product DMAB within few seconds by surface photochemical reaction in the Au-Ag heterojunction of core-shell nanostars. Au/Ag NSs with multiple sharp tips exhibit intense LSPR and highly strong electric fields are created at the tips, which enables the generation of hot electrons responsible for the rapid conversion reaction. Such well-designed interfacial bimetallic nanostars could have potential applications in surface enhanced spectroscopy, biosensing, and photoinduced surface catalysis. This journal is � The Royal Society of Chemistry.
  • Item
    Interfacial Engineering of CuCo2S4/g-C3N4Hybrid Nanorods for Efficient Oxygen Evolution Reaction
    (American Chemical Society, 2021-07-29T00:00:00) Biswas, Rathindranath; Thakur, Pooja; Kaur, Gagandeep; Som, Shubham; Saha, Monochura; Jhajhria, Vandna; Singh, Harjinder; Ahmed, Imtiaz; Banerjee, Biplab; Chopra, Deepak; Sen, Tapasi; Haldar, Krishna Kanta
    Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2. � 2021 American Chemical Society.