Department Of Chemistry
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/33
Browse
4 results
Search Results
Item Interfacial design of gold/silver core-shell nanostars for plasmon-enhanced photocatalytic coupling of 4-aminothiophenol(Royal Society of Chemistry, 2021-10-02T00:00:00) Kaur, Gagandeep; Tanwar, Swati; Kaur, Vishaldeep; Biswas, Rathindranath; Saini, Sangeeta; Haldar, Krishna Kanta; Sen, TapasiChemical reactions under mild conditions mediated by localized surface plasmon resonance (LSPR) of metals have emerged as a functional research field. In the present study, we report an interfacial designing procedure for the fabrication of a class of bimetallic hybrid nanomaterials as a profoundly active photocatalyst for the conversion of para-aminothiophenol (PATP) into 4,4?-dimercaptoazobenzene. For this purpose, core-shell nanostars composed of gold (core) and silver (shell) (Au/Ag NSs) were utilized as both surface-enhanced Raman scattering substrate and plasmon driven catalyst under 532 nm laser excitation. Au/Ag NSs with sharp tips display excellent surface-enhanced Raman scattering (SERS) efficiency of PATP. Employing the SERS study, it has been found that PATP rapidly converts into its dimerized product DMAB within few seconds by surface photochemical reaction in the Au-Ag heterojunction of core-shell nanostars. Au/Ag NSs with multiple sharp tips exhibit intense LSPR and highly strong electric fields are created at the tips, which enables the generation of hot electrons responsible for the rapid conversion reaction. Such well-designed interfacial bimetallic nanostars could have potential applications in surface enhanced spectroscopy, biosensing, and photoinduced surface catalysis. This journal is � The Royal Society of Chemistry.Item Structural and electronic investigation of metal-semiconductor hybrid tetrapod hetero-structures(Springer Verlag, 2017) Haldar, K.K.; Muley, V.Y.; Datar, S.; Patra, A.This article highlights the new electronic properties of tetrapod hetero-structures with metal Au core and semiconductor CdSe arms, which is one of the new classes of hybrid metal-semiconductor nanostructures. From the analysis of XRD, HRTEM, HAADF-STEM images, and EDAX line-scan studies, the growth mechanism of all these hetero-structures is proposed. These findings are important from the basic fundamental aspects of understanding the shape control of hetero-structures. Scanning tunneling spectroscopic study confirms the coulomb staircase-like features near Au which is characteristic of Au nanoparticles and the gap increases as we move the tip towards CdSe. Analysis suggests that the resonance tunneling occurs between valance band edge (conduction band edge) of CdSe and coulomb stairs of Au dot. These tetrapod hetero-structures could pave the way for designing new optical-based materials for developing new challenging photonic devices. ? 2017, Springer International Publishing Switzerland.Item Core size matters! High Raman enhancing core tunable Au/Ag bimetallic core-shell nanoparticles(Springer Verlag, 2017) Paital, D.; Sen, T.; Patra, A.; Haldar, K.K.Bimetallic core-shell nanostructures have been attracted tremendous attention due to their ability to form novel materials with unique chemical, optical, and physical properties. Here, we have studied the influence of core size of Au/Ag bimetallic core-shell nanostructures on the Raman enhancement efficiency with the Raman-active probe methylene blue. The surface-enhanced Raman scattering intensity is increased with increase in the core size of Au/Ag bimetallic core-shell nanoparticles. Interestingly, the enhancement factor is found to be 6.58?נ107 for the Au100/Ag core-shell nanoparticles and allows easy detection of analyte methylene blue. Thus, surface-enhanced Raman scattering properties of the metal nanoparticles are significantly enhanced due to the Au/Ag core-shell structures and the enhancement factor is dependent on the size of the core of the bimetallic nanoparticles. ? 2017, Springer International Publishing AG.Item Shell thickness matters! Energy transfer and rectification study of Au/ZnO core/shell nanoparticles(Academic Press Inc., 2016) Haldar, Krishna Kanta; Sen, TapasiIn the present study we report the influence of shell thickness on fluorescence resonance energy transfer between Au/ZnO core-shell nanoparticles and Rhodamine 6G dye by steady-state and time-resolved spectroscopy and rectification behaviours. Au/ZnO core-shell nanoparticles with different shell thickness were synthesized in aqueous solution by chemically depositing zinc oxide on gold nanoparticles surface. A pronounced effect on the photoluminescence (PL) intensity and shortening of the decay time of the dye in presence of Au/ZnO core-shell nanoparticles is observed. The calculated energy transfer efficiencies from dye to Au/ZnO are 62.5%, 79.2%, 53.6% and 46.7% for 1.5 nm, 3 nm, 5 nm and 8 nm thickness of shell, respectively. Using FRET process, the calculated distances (r) are 117.8, 113.2 ? 129.9 ? and 136.7 ? for 1.5 nm, 3 nm, 5 nm and 8 nm thick Au/ZnO core-shell nanoparticles, respectively. The distances (d) between the donor and acceptor are 71.0, 57.8, 76.2 and 81.6 ? for 1.5 nm, 3 nm, 5 nm and 8 nm thick core-shell Au/ZnO nanoparticles, respectively, using the efficiency of surface energy transfer (SET). The current-voltage (I-V) curve of hybrid Au/ZnO clearly exhibits a rectifying nature and represents the n-type Schottky diode characteristics with a typical turn-on voltage of between 0.6 and 1.3 V. It was found that the rectifying ratio increases from 20 to 90 with decreasing the thickness of the shell from 5 nm to 3 nm and with shell thickness of 8 nm, electrical transport through the core-shell is similar to what is observed with pure ZnO samples nanoparticles. The results indicated that the Au/ZnO core-shell nanoparticles with an average shell thickness of 3 nm exhibited the maximum energy transfer efficiencies (79.2%) and rectification (rectifying ratio 90). ? 2016