Department Of Chemistry

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/33

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Fabrication of mesoporous titanium dioxide using azadirachta indica leaves extract towards visible-light-driven photocatalytic dye degradation
    (Elsevier, 2020) Dash, L; Biswas, R; Ghosh, R; Kaur, V; Banerjee, B; Sen, T; Patil, R.A; Ma, Y.-R; Haldar, K.K.
    An environmental benign, straightforward and financially savvy technique has been developed to fabricate mesoporous titanium dioxide (TiO2) nanostructure utilizing Azadirachta indica leaves extract. The aqueous extract of Azadirachta indica leaves act as a template which upon calcination at high temperature generated mesoporous TiO2. The structure of the mesoporous TiO2 was confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and isothermal gas adsorption-desorption (BET). It has been found that the crystallinity and pore diameter of mesoporous titanium dioxide (TiO2) depends on the amount of Azadirachta indica leaves extract, resulting in enhanced crystallinity with an increasing amount of Azadirachta indica leaves extract. The pore diameter was found somewhere in the range from 16.67 to 46.19 nm, and the BET surface area varies from 8.55–157.35 m2/g.. Finally, we have explored as-synthesized mesoporous TiO2 for visible-light-driven photocatalytic degradation of rhodamine 6 G (R6 G) dye. It is noteworthy that the photocatalytic degradation rate of R6 G in presence of as-synthesized mesoporous TiO2 depends only on the amount of plant extract used and not on temperature and other factors. This is presumably due to the increased optical band gap of TiO2. - 2020 Elsevier B.V.
  • Thumbnail Image
    Item
    One pot synthesis of Au embedded ZnO nanorods composite heterostructures with excellent photocatalytic properties
    (Central University of Punjab, 2018) Biswas, Rathindranath; Haldar, Krishna Kanta
    Here, we have designed a noble composite nanostructure by embedding Au nanoparticles into ZnO nanorods surface in one pot synthesis as a photocatalyst. The formation the composite nanostructure was confirmed by X-ray diffraction, Xray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) investigations. Microscopic studies suggest that spherical Au nanoparticles are nucleated on the ZnO nanorods surface. XPS shows shifting of peak positions towards higher binding energy indicating charge transfer from ZnO to Au in the composite nanostructures. This is unambiguously confirmed by the steady state spectroscopic studies. It is found that 95.7% of Methylene blue (MB) dye is degraded by the composite nanostructure after 140 min under UV light illumination, and the apparent rate constant is found to be 0.013 min-1 . This new class of Au nanoparticles embedded ZnO nanorods composite nanostructure opens up new possibilities in photocatalytic, solar energy conversion, photovoltaic, and other new emerging applications.