Department Of Biochemistry And Microbial Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/23

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Pseudomonas citronellolis; a multi-metal resistant and potential plant growth promoter against arsenic (V) stress in chickpea
    (Elsevier, 2019) Adhikary, Arindam; Kumar, R; Pandir,R; Bhardwaj, Pankaj; Wusirika, Ramakrishna; Kumar, Sanjeev
    Soil micro-biota plays a vital role in maintaining plant growth and fitness under normal and adverse conditions. Pseudomonas is one of the most important free-living and copious genera in south-west Punjab and involved in plant growth promotion under heavy metal stress. In this study, we have studied microbial diversity of the agricultural and marginal land based on 16S rRNA gene and screened eight strains of Pseudomonas for its tolerances towards various heavy metals and for plant growth promoting properties (PGP). The best strain is tested in chickpea plants against Arsenic (As5+) stress. All the strains responded differently to heavy metals viz. Arsenic, (As5+ (0.3–0.5M) and As3+ (250 μg mL−1) Cadmium (Cd2+) (250–350 μg mL−1), Chromium (Cr2+) (200–350 μg mL−1) and Mercury (Hg2+) (1–2 μg mL−1). Out of eight strains, only two strains (KM594398 and KM594397) showed plant growth promoting characters, concurrently they were highly tolerant to Arsenic (As5+). Pseudomonas citronellolis (PC) (KM594397) showed the best results in terms of As5+ tolerance and plant growth promoting activity, hence further tested for actual plant growth response in chickpea (Cicer arietinum L.) under As5+ (10–160 mg kg−1) stress. Pseudomonas citronellolis enhanced plant growth and dry biomass under As5+ stress. High As5+ tolerance and plant growth promoting activity of Pseudomonas citronellolis in chickpea especially designate this strain suitable for marginal lands and heavy metals contaminated sites. © 2019 Elsevier Masson SAS
  • Thumbnail Image
    Item
    Nutrient enhancement of chickpea grown with plant growth promoting bacteria in local soil of Bathinda, Northwestern India
    (Springer, 2019) Dogra, Nitin; Yadav, Radheshyam; Kaur, Manpreet; Adhikary, Arindam; Kumar, Sanjeev; Ramakrishna, Wusirika
    Plant growth promoting bacteria (PGPB) enhance crop productivity as part of green technology to reduce the use of chemical fertilizers. They also have the capability to enhance macro- and micronutrient content of plants. In the present study, PGPB isolates belonging to Pseudomonas citronellis (PC), Pseudomonas sp. RA6, Serratia sp. S2, Serratia marcescens CDP13, and Frateuria aurantia (Symbion-K) were tested on two chickpea varieties, PBG1 and PBG5 grown for 30 days in local soil from Bathinda region in Northwestern India. PC and CDP13 were found to be better chickpea growth stimulators compared to the commercial Symbion-K based on shoot length and biomass. Most PGPB enhanced macro- and micronutrients in shoots to varying degrees compared to the control. PBG5 gave better response compared to PBG1 with reference to plant growth attributes and enhancement of the macronutrients, calcium, nitrogen and phosphorus and micronutrients, boron, copper, iron, and zinc. PBG5 is a high yielding variety with better resistance compared to PBG1. Overall, PGPB isolated from the local soil and PGPB from other parts of India were shown to be useful for enhancement of nutrient content and plant growth.