Department Of Biochemistry And Microbial Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/23
Browse
2 results
Search Results
Item A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/?-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response(MDPI, 2022-03-28T00:00:00) Sharma, Uttam; Murmu, Masang; Barwal, Tushar Singh; Tuli, Hardeep Singh; Jain, Manju; Prakash, Hridayesh; Kaceli, Tea; Jain, Aklank; Bishayee, AnupamDespite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/?-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/?-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients. � 2022 by the authors. Licensee MDPI, Basel, Switzerland.Item Micrornas and long noncoding rnas as novel therapeutic targets in estrogen receptor-positive breast and ovarian cancers(MDPI, 2021-04-15T00:00:00) Barwal, Tushar Singh; Sharma, Uttam; Bazala, Sonali; Singh, Ipsa; Jain, Manju; Prakash, Hridayesh; Shekhar, Shashank; Sandberg, Elise N.; Bishayee, Anupam; Jain, AklankAromatase inhibitors (AIs) such as anastrozole, letrozole, and exemestane have shown to prevent metastasis and angiogenesis in estrogen receptor (ER)-positive breast and ovarian tumors. They function primarily by reducing estrogen production in ER-positive post-menopausal breast and ovarian cancer patients. Unfortunately, current AI-based therapies often have detrimental side-effects, along with acquired resistance, with increased cancer recurrence. Thus, there is an urgent need to identify novel AIs with fewer side effects and improved therapeutic efficacies. In this regard, we and others have recently suggested noncoding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), as potential molecular targets for utilization in modulating cancer hallmarks and overcoming drug resistance in several cancers, including ER-positive breast and ovarian cancer. Herein, we describe the disruptive functions of several miRNAs and lncRNAs seen in dysregulated cancer metabolism, with a focus on the gene encoding for aromatase (CYP19A1 gene) and estrogen synthesis as a novel therapeutic approach for treating ER-positive breast and ovarian cancers. Furthermore, we discuss the oncogenic and tumor-suppressive roles of several miRNAs (oncogenic miRNAs: MIR125b, MIR155, MIR221/222, MIR128, MIR2052HG, and MIR224; tumor-suppressive miRNAs: Lethal-7f, MIR27B, MIR378, and MIR98) and an oncogenic lncRNA (MIR2052HG) in aromatase-dependent cancers via transcriptional regulation of the CYP19A1 gene. Additionally, we discuss the potential effects of dysregulated miRNAs and lncRNAs on the regulation of critical oncogenic molecules, such as signal transducer, and activator of transcription 3, ?-catenin, and integrins. The overall goal of this review is to stimulate further research in this area and to facilitate the development of ncRNA-based approaches for more efficacious treatments of ER-positive breast and ovarian cancer patients, with a slight emphasis on associated treatment� delivery mechanisms. � 2021 by the authors. Licensee MDPI, Basel, Switzerland.