Department Of Biochemistry And Microbial Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/23

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Metabolomics, biomass and lignocellulosic total sugars analysis in foxtail millet (Setaria italica) inoculated with different combinations of plant growth promoting bacteria and mycorrhiza
    (Communications in Plant Sciences, 2017) Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika
    Foxtail millet (Setaria italica) is the second most widely produced millet with potential as a biofuel source. Employment of plant growth promoting bacteria (PGPB) and mycorrhiza could serve as environment-friendly alternatives for the use of excessive NPK fertilizers and producing biofuel. The highest increase of biomass was associated with endomycorrhiza combined with PGPB in comparison to control. Nuclear magnetic resonance (NMR) analysis detected 28 metabolites in foxtail shoot with most of them upregulated in ecto/endomycorrhiza group and combined with PGPB. The upregulation of metabolites associated with synthesis of amino acids correlated positively with biomass. The inoculation with both PGPB and endomycorrhiza gave the best results with reference to total sugar yield. Our study indicates that PGPB and endomycorrhiza combination is well suited for enhancing biomass and boosting sugar yield, which are useful attributes for utilizing foxtail millet as a biofuel source.
  • Thumbnail Image
    Item
    Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil
    (Elsevier B.V., 2017) Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika; Dhawi, F.; Datta, R.; Ramakrishna, W.
    Sorghum is an economically important crop, a model system for gene discovery and a biofuel source. Sorghum seedlings were subjected to three microbial treatments, plant growth promoting bacteria (B), arbuscular mycorrhizal (AM) fungi mix with two Glomus species (G. aggregatum and G. etunicatum), Funelliformis mosseae and Rhizophagus irregularis (My), and B and My combined (My + B). Proteomic analysis was conducted followed by integration with metabolite, plant biomass and nutrient data. Out of 366 differentially expressed proteins in sorghum roots, 44 upregulated proteins overlapping among three treatment groups showed positive correlation with sorghum biomass or element uptake or both. Proteins upregulated only in B group include asparagine synthetase which showed negative correlation with biomass and uptake of elements. Phosphoribosyl amino imidazole succinocarboxamide protein with more than 50-fold change in My and My + B groups correlated positively with Ca, Cu, S and sucrose levels in roots. The B group showed the highest number of upregulated proteins among the three groups with negative correlation with sorghum biomass and element uptake. KEGG pathway analysis identified carbon fixation as the unique pathway associated with common upregulated proteins while biosynthesis of amino acids and fatty acid degradation were associated with common downregulated proteins. Protein-protein interaction analysis using STRING identified a major network with thirteen downregulated proteins. These findings suggest that plant-growth-promoting-bacteria alone or in combination with mycorrhiza enhanced radical scavenging system and increased levels of specific proteins thereby shifting the metabolism towards synthesis of carbohydrates resulting in sorghum biomass increase and uptake of nutrients. ? 2016