Department Of Biochemistry And Microbial Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/23
Browse
14 results
Search Results
Item Designing of neoepitopes based vaccine against breast cancer using integrated immuno and bioinformatics approach(Taylor and Francis Ltd., 2023-08-16T00:00:00) Shuaib, Mohd; Singh, Atul Kumar; Gupta, Sanjay; Alasmari, Abdullah F.; Alqahtani, Flaeh; Kumar, ShashankCancer is characterized by genetic instability due to accumulation of somatic mutations in the genes which generate neoepitopes (mutated epitopes) for targeting by Cytotoxic T lymphocytes (CTL). Breast cancer has a high transformation rate with unique composition of mutational burden and neoepitopes load that open a platform to designing a neoepitopes-based vaccine. Neoepitopes-based therapeutic cancer vaccines designed by neoantigens have shown to be feasible, nontoxic, and immunogenic in cancer patients. Stimulation of CTL by neoepitope-based vaccine of self-antigenic proteins plays a key role in distinguishing cancer cells from normal cells and selectively targets only malignant cells. A neoepitopes-based vaccine to combat breast cancer was designed by combining immunology and bioinformatics approaches. The vaccine construct was assembled by the fusion of CTL neoepitopes, helper sequences (used for better separation of the epitopes), and adjuvant together with linkers. The neoepitopes were identified from somatic mutations in the MUC16, TP53, RYR2, F5, DNAH17, ASPM, and ABCA13 self-antigenic proteins. The vaccine construct was undertaken to study the immune simulations (IS), physiochemical characteristics (PP), molecular docking (MD) and simulations, and cloning in appropriate vector. Together, these parameters establish safety, stability, and a strong binding affinity against class I MHC molecules capable of inducing a complete immune response against breast cancer cells. Communicated by Ramaswamy H. Sarma. � 2023 Informa UK Limited, trading as Taylor & Francis Group.Item GNL3 and PA2G4 as Prognostic Biomarkers in Prostate Cancer(MDPI, 2023-05-12T00:00:00) Kumar, Shashank; Shuaib, Mohd; AlAsmari, Abdullah F.; Alqahtani, Faleh; Gupta, SanjayProstate cancer is a multifocal and heterogeneous disease common in males and remains the fifth leading cause of cancer-related deaths worldwide. The prognosis of prostate cancer is variable and based on the degree of cancer and its stage at the time of diagnosis. Existing biomarkers for the prognosis of prostate cancer are unreliable and lacks specificity and sensitivity in guiding clinical decision. There is need to search for novel biomarkers having prognostic and predictive capabilities in guiding clinical outcomes. Using a bioinformatics approach, we predicted GNL3 and PA2G4 as biomarkers of prognostic significance in prostate cancer. A progressive increase in the expression of GNL3 and PA2G4 was observed during cancer progression having significant association with poor survival in prostate cancer patients. The Receiver Operating Characteristics of both genes showed improved area under the curve against sensitivity versus specificity in the pooled samples from three different GSE datasets. Overall, our analysis predicted GNL3 and PA2G4 as prognostic biomarkers of clinical significance in prostate cancer. � 2023 by the authors.Item Natural Steroidal Lactone Induces G1/S Phase Cell Cycle Arrest and Intrinsic Apoptotic Pathway by Up-Regulating Tumor Suppressive miRNA in Triple-Negative Breast Cancer Cells(MDPI, 2022-12-27T00:00:00) Shuaib, Mohd; Prajapati, Kumari Sunita; Gupta, Sanjay; Kumar, ShashankTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with minimal treatment options. In the present work, Withaferin A (WA), a natural steroidal lactone found in Withania somnifera (Solanaceae), was studied to deduce the miRNA expression modulation mediated anticancer mode of action in TNBC cells. Small RNA next generation sequencing (NGS) of WA (2 �M) and vehicle (0.1% DMSO)-treated MDA-MB-231 cells revealed a total of 413 differentially expressed miRNAs (DEMs) and demonstrated that WA potentially up-regulates the miR-181c-5p, miR-15a-5p, miR-500b-5p, miR-191-3p, and miR-34a-5p and down-regulates miR-1275, miR-326, miR-1908-5p, and miR-3940-3p among total DEMs. The NGS and qRT-PCR expression analysis revealed a significantly higher expression of miR-181c-5p among the top 10 DEMs. Predicted target genes of the DEMs showed enrichment in cancer-associated gene ontology terms and KEGG signaling pathways. Transient up-expression of mir-181c-5p showed a time-dependent decrease in MDA-MB-231 and MDA-MB-453 cell viability. Co-treatment of miR-181c-5p mimic and WA (at varying concentration) down-regulated cell cycle progression markers (CDK4 and Cyclin D1) at mRNA and protein levels. The treatment induced apoptosis in MDA-MB-231 cells by modulating the expression/activity of Bax, Bcl2, Caspase 3, Caspase 8, Caspase 3/7, and PARP at mRNA and protein levels. Confocal microscopy and Annexin PI assays revealed apoptotic induction in miRNA- and steroidal-lactone-treated MDA-MB-231 cells. Results indicate that the Withaferin A and miRNA mimic co-treatment strategy may be utilized as a newer therapeutic strategy to treat triple-negative breast cancer. � 2022 by the authors.Item The Multifaceted Role of Signal Peptide-CUB-EGF Domain-Containing Protein (SCUBE) in Cancer(MDPI, 2022-09-13T00:00:00) Kumar, Shashank; Prajapati, Kumari Sunita; Gupta, SanjaySignal peptide, CUB, and EGF-like domain-containing proteins (SCUBE) are secretory cell surface glycoproteins that play key roles in the developmental process. SCUBE proteins participate in the progression of several diseases, including cancer, and are recognized for their oncogenic and tumor suppressor functions depending on the cellular context. SCUBE proteins promote cancer cell proliferation, angiogenesis, invasion, or metastasis, stemness or self-renewal, and drug resistance. The association of SCUBE with other proteins alters the expression of signaling pathways, including Hedgehog, Notch, TGF-?/Smad2/3, and ?-catenin. Further, SCUBE proteins function as potential prognostic and diagnostic biomarkers for breast cancer, renal cell carcinoma, endometrial carcinoma, and nasopharyngeal carcinoma. This review presents key features of SCUBE family members, and their structure and functions, and highlights their contribution in the development and progression of cancer. A comprehensive understanding of the role of SCUBE family members offers novel strategies for cancer therapy. � 2022 by the authors.Item Withaferin A mediated changes of miRNA expression in breast cancer-derived mammospheres(John Wiley and Sons Inc, 2022-06-30T00:00:00) Prajapati, Kumari Sunita; Shuaib, Mohd.; Gupta, Sanjay; Kumar, ShashankBreast cancer is a heterogeneous disease consisting of atypical cell populations that share stem cell-like characteristics associated with therapeutic resistance, disease relapse, and poor clinical outcome. MicroRNAs (miRNA),�and small noncoding RNA, are pivotal in the regulation of self-renewal, stemness, and cellular differentiation. Withaferin A (WA), a steroidal lactone, is a major bioactive constituent of Withania somnifera (Solanaceae) known for its anticancer properties. In this study, the effect of WA on modulation of miRNA expression in breast cancer-derived mammosphere was assessed utilizing small RNA sequencing. Treatment with WA inhibited MCF-7 and T47D cells derived mammosphere formation with a significant decrease in CD44, EpCAM, Nanog, OCT4, and SOX2 as markers of self-renewal and stemness. Small RNA sequencing demonstrated a total of 395 differentially expressed miRNAs (DEMs) including 194 upregulated and 201 downregulated miRNAs in WA-treated�MCF-7 mammospheres. Bioinformatics analysis utilizing the�KEGG pathway, Gene Ontology enrichment, protein?protein, and miRNA-mRNA interaction network identified altered expression in a few hub genes viz.�AKT1, PTEN, MYC, CCND1,�VEGFA,�NOTCH1, and�IGFR1�associated with DEMs in WA-treated�mammospheres. Further quantitative�RT-PCR analysis validated the expression of DEMs including miR-549a-5p, miR-1247-5p, miR-124-5p, miR-137-5p, miR-34a-5p, miR-146a-5p, miR-99a-5p, miR-181a-5p, let-7c-5p, and let-7a-5p. In particular, let-7c-5p is designated as a tumor suppressor in breast cancer. An increase in miR-let-7c-5p expression was noted after WA treatment, with a simultaneous decrease in CCND1 and c-MYC at mRNA and protein levels. Taken together, our study demonstrated WA-mediated miRNA expression, in particular, upregulation of miR-let-7c-5p, leads to the inhibition of breast cancer cells derived mammospheres. � 2022 Wiley Periodicals LLC.Item Role of prostate cancer stem-like cells in the development of antiandrogen resistance(OAE Publishing Inc., 2022-06-09T00:00:00) Kushwaha, Prem Prakash; Verma, Shiv; Kumar, Shashank; Gupta, SanjayAndrogen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities. � The Author(s) 2022.Item Targeting Breast Cancer-Derived Stem Cells by Dietary Phytochemicals: A Strategy for Cancer Prevention and Treatment(MDPI, 2022-06-10T00:00:00) Prajapati, Kumari Sunita; Gupta, Sanjay; Kumar, ShashankBreast cancer is heterogeneous disease with variable prognosis and therapeutic response. Approximately, 70% of diagnosed breast cancer represents the luminal A subtype. This subpopulation has a fair prognosis with a lower rate of relapse than the other clinical subtypes. Acquisition of stemness in luminal A subtype modifies the phenotype plasticity to accomplish increased aggressiveness and therapeutic resistance. Therefore, targeting luminal A-derived breast cancer stem cells (BCSCs) could be a promising strategy for its prevention and treatment. Extensive studies reveal that dietary phytochemicals have the potential to target BCSCs by modulating the molecular and signal transduction pathways. Dietary phytochemicals alone or in combination with standard therapeutic modalities exert higher efficacy in targeting BCSCs through changes in stemness, self-renewal properties and hypoxia-related factors. These combinations offer achieving higher radio-and chemo-sensitization through alteration in the key signaling pathways such as AMPK, STAT3, NF-kB, Hedgehog, PI3K/Akt/mTOR, Notch, GSK3?, and Wnt related to cancer stemness and drug resistance. In this review, we highlight the concept of targeting luminal A-derived BCSCs with dietary phytochemicals by summarizing the pathways and underlying mechanism(s) involved during therapeutic resistance. � 2022 by the authors. Licensee MDPI, Basel, Switzerland.Item Drug Resistance Mechanism of M46I-Mutation-Induced Saquinavir Resistance in HIV-1 Protease Using Molecular Dynamics Simulation and Binding Energy Calculation(MDPI, 2022-03-30T00:00:00) Rana, Nilottam; Singh, Atul Kumar; Shuaib, Mohd; Gupta, Sanjay; Habiballah, Mahmoud M.; Alkhanani, Mustfa F.; Haque, Shafiul; Reshi, Mohd Salim; Kumar, ShashankDrug-resistance-associated mutation in essential proteins of the viral life cycle is a major concern in anti-retroviral therapy. M46I, a non-active site mutation in HIV-1 protease has been clinically associated with saquinavir resistance in HIV patients. A 100 ns molecular dynamics (MD) simulation and MM-PBSA calculations were performed to study the molecular mechanism of M46I-mutation-based saquinavir resistance. In order to acquire deeper insight into the drug-resistance mechanism, the flap curling, closed/semi-open/open conformations, and active site compactness were studied. The M46I mutation significantly affects the energetics and conformational stability of HIV-1 protease in terms of RMSD, RMSF, Rg, SASA, and hydrogen formation potential. This mutation significantly decreased van der Waals interaction and binding free energy (?G) in the M46I�saquinavir complex and induced inward flap curling and a wider opening of the flaps for most of the MD simulation period. The predominant open conformation was reduced, but inward flap curling/active site compactness was increased in the presence of saquinavir in M46I HIV-1 protease. In conclusion, the M46I mutation induced structural dynamics changes that weaken the protease grip on saquinavir without distorting the active site of the protein. The produced information may be utilized for the discovery of inhibitor(s) against drug-resistant HIV-1 protease. � 2022 by the authors. Licensee MDPI, Basel, Switzerland.Item A candidate triple-negative breast cancer vaccine design by targeting clinically relevant cell surface markers: an integrated immuno and bio-informatics approach(Springer Science and Business Media Deutschland GmbH, 2022-02-20T00:00:00) Kumar, Shashank; Shuaib, Mohd; Prajapati, Kumari Sunita; Singh, Atul Kumar; Choudhary, Princy; Singh, Sangeeta; Gupta, SanjayTriple-negative breast cancer (TNBC) is an aggressive, metastatic/invasive sub-class of breast cancer (BCa). Cell surface protein-derived multi-epitope vaccine-mediated targeting of TNBC cells could be a better strategy against the disease. Literature-based identified potential cell surface markers for TNBC cells were subjected to expression pattern and survival analysis in BCa patient sample using TCGA database. The cytotoxic and helper T-lymphocytes antigenic epitopes in the test proteins were identified, selected and fused together with the appropriate linkers and an adjuvant, to construct the multi-epitope vaccine (MEV). The immune profile, physiochemical property (PP) and world population coverage of the MEV was studied. Immune simulation, cloning in a suitable vector, molecular docking (against Toll-like receptors, MHC (I/II) molecules), and molecular dynamics simulations of the MEV was performed. Cell surface markers were differentially expressed in TNBC samples and showed poor survival in TNBC patients. Satisfactory PP and WPC (up to 89 and 99%) was observed. MEV significant stable binding with the immune molecules and induced the immune cells in silico. The designed vaccine has capability to elicit immune response which could be utilized to target TNBC alone/combination with other therapy. The experimental studies are required to check the efficacy of the vaccine. � 2022, King Abdulaziz City for Science and Technology.Item Obesity and Cancer(Springer Singapore, 2021-07-18T00:00:00) Kumar, Shashank; Gupta, SanjayThis book highlights the concordance between signaling pathways that are involved in obesity and cancer cross-talks. It describes the role of cytokines, chemokines, growth factors, insulin, and adipokines in the development of obesity-associated cancers. The book reviews the role of inflammatory signaling pathways such as estrogen-mediated signaling, mTOR and AMP-activated protein kinase pathway and the involvement of adaptive and innate immunity, oxidative stress, gene polymorphism, dietary phytochemicals, and miRNAs in obesity and cancer. In addition, it covers the latest research on the drugs and natural therapeutic agents that target obesity-induced cancers and discusses various in vivo models for studying obesity and obesity-associated cancer. Lastly, it analyses the role of genetic polymorphisms in the obesity-related genes that influence cancer development. The book is a useful resource for researchers in the field of cancer, pharmacology, food chemistry, and clinical biochemistry. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Taylor and Francis Pte Ltd. 2021.