Department Of Biochemistry And Microbial Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/23

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration
    (Elsevier B.V., 2020) Ramakrishna W.; Rathore P.; Kumari R.; Yadav R.
    Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.
  • Item
    Plant growth promoting bacteria in agriculture: Two sides of a coin
    (Elsevier, 2019) Ramakrishna, Wusirika; Yadav, Radheshyam; Li, Kefeng
    Plant growth promoting bacteria (PGPB) provide multiple benefits in agriculture by enhancing crop productivity and nutrient content and suppressing the growth of pathogens. Development of beneficial plant-microbe interactions based on genomics, transcriptomics, proteomics and metabolomic data of both PGPB and host will lead to optimized microbial inoculants for enhancing crop yield and nutrient content. PGPB are promoted as a green technology which will reduce the use of chemical fertilizers thereby improving soil health. Although a significant increase in the use of PGPB in agriculture was observed in the last two decades, there is a dearth of long-term studies addressing the effects of PGPB on existing microbial community structure. It is likely that most or all PGPB are resistant to common antibiotics used to treat human diseases. Antibiotic resistance of PGPB may be due to the presence of antibiotic resistance genes and intrinsic resistance due to the presence of efflux pumps. The biological significance of resistance to antibiotics and metals and their relation to plant growth promoting activity, if any, is not known. The consequences of harboring antibiotic resistance may be negative if the trait is transferred to other soil or environmental bacteria. Strategies to develop PGPB strains with useful traits of plant growth promotion but without resistance to common antibiotics used by humans, would enhance agricultural productivity without the negative effects on the environment. Alternately, harboring antibiotic resistance may be positive if it is due to intrinsic resistance involving proteins which also have other functions. Antibiotic resistance of PGPB may be an essential trait if it is related to their plant growth promoting activity. Overall, there is a need to conduct large-scale screening of PGPB for antibiotic resistance and long-term studies to see the effect of the introduction of biofertilizers on native soil microbial community.