Department Of Biochemistry And Microbial Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/23

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes
    (Elsevier, 2020) Upadhyay, S; Mantha, A.K; Dhiman, Monisha
    Ethnopharmacological relevance: Doxorubicin (DOX) is an effective anti-neoplastic drug, however; it has downside effects on cardiac health and other vital organs. The herbal remedies used in day to day life may have a beneficial effect without disturbing the health of the vital organs. Glycyrrhiza glabra L. is a ligneous perennial shrub belonging to Leguminosae/Fabaceae/Papilionaceae family growing in Mediterranean region and Asia and widespread in Turkey, Italy, Spain, Russia, Syria, Iran, China, India and Israel. Commonly known as mulaithi in north India, G. glabra has glycyrrhizin, glycyrrhetic acid, isoliquiritin, isoflavones, etc., which have been reported for several pharmacological activities such as anti-demulcent, anti-ulcer, anti-cancer, anti-inflammatory and anti-diabetic. Aim of the study: The objective of the present study is to investigate the interaction between the molecular factors like PPAR-?/? and SIRT-1 during cardiac failure arbitrated by DOX under in vitro conditions and role of Glycyrrhiza glabra (Gg) root extract in alleviating these affects. Materials and methods: In the present study, we have examined the DOX induced responses in H9c2 cardiomyocytes and investigated the role of phytochemical Glycyrrhiza glabra in modulating these affects. MTT assay was done to evaluate the cell viability, Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS) levels, mitochondrial ROS, mitochondrial membrane potential was estimated using fluorescent probes. The oxidative stress in terms of protein carbonylation, lipid peroxidation and DNA damage was detected via spectrophotometric methods and immune-fluorescence imaging. The cardiac markers and interaction between SIRT-1 and PPAR-?/? was measured using Real-Time PCR, Western blotting and Co-immunoprecipitation based studies. Results: The Glycyrrhiza glabra (Gg) extracts maintained the membrane integrity and improved the lipid homeostasis and stabilized cytoskeletal element actin. Gg phytoextracts attenuated aggravated ROS level, repaired the antioxidant status and consequently, assisted in repairing the DNA damage and mitochondrial function. Further, the expression of hypertrophic markers in the DOX treated cardiomyocytes reconciled the expression factors both at the transcriptional and translational levels after Gg treatment. SIRT-1 mediated pathway and its downstream activator PPARs are significant in maintaining the cellular functions. It was observed that the Gg extract allows regaining the nuclear SIRT-1 and PPAR-? level which was otherwise reduced with DOX treatment in H9c2 cardiomyocytes. The co-immunoprecipitation (Co-IP) documented that SIRT-1 interacts with PPAR-? in the untreated control H9c2 cardiomyocytes whereas DOX treatment interferes and diminishes this interaction however the Gg treatment maintains this interaction. Knocking down SIRT-1 also downregulated expression of PPAR-? and PPAR-? in DOX treated cells and Gg treatment was able to enhance the expression of PPAR-? and PPAR-? in SIRT-1 knocked down cardiomyocytes. Conclusions: The antioxidant property of Gg defend the cardiac cells against the DOX induced toxicity via; 1) reducing the oxidative stress, 2) maintaining the mitochondrial functions, 3) regulating lipid homeostasis and cardiac metabolism through SIRT-1 pathway, and 4) conserving the cardiac hypertrophy and hence preserving the cardiomyocytes health. Therefore, Gg can be recommended as a healthy supplement with DOX towards cancer therapeutics associated cardiotoxicity. - 2020
  • Thumbnail Image
    Item
    Role of Helicobacter pylori Enriched Media in Inducing Oxidative Stress in Human Cell lines
    (Central University of Punjab, 2018) Samal, Pallavi; Dhiman, Monisha
    Helicobacter pylori is a gram-negative, helical, microaerophilic bacterium which colonizes the human gastrointestinal tract. Vacuolating cytotoxin A (VacA) is one of the major virulent factors. Reactive oxygen species (ROS) and Reactive nitrogen species (RNS) produced by the immune and epithelial cells damage the host cell thereby resulting in a persistent infection. The prolonged infection results in chronic inflammation, oxidative stress and DNA damage. The microbe affects the major macromolecules of the host tissues lipids, proteins and DNA which leads to lipid peroxidation, protein oxidation and DNA fragmentation hence making the oxidative stress a deleterious damage. Role of H. pylori enriched media (HPEM) in inducing oxidative stress in two human cell lines AGS (human gastric cell line) and THP-1(human monocytic cell line) was studied in present work. The AGS cells and THP-1 cells was treated with various concentrations of HPEM and oxidative stress was evaluated by examining the levels of protein carbonyls, TBARS (thiobarbituric acid reactive species) and nitric oxide by spectophotometric and Western blotting methods. The oxidative stress induced by HPEM showed damaging effects on the cell membrane, protein and produced significantly high nitric oxide (NO) when compared with the untreated controls. From the present work it can be concluded that HPEM exposure to THP-1 and AGS cells enhanced the oxidative stress which leads to cellular damage and is ultimately responsible for the severe H. pylori associated fatal complications during its pathogenesis.