Department Of Biochemistry And Microbial Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/23
Browse
4 results
Search Results
Item Analysis of the Inhibitory Effect of hsa-miR-145-5p and hsa-miR-203a-5p on Imatinib-Resistant K562 Cells by GC/MS Metabolomics Method(American Chemical Society, 2023-09-14T00:00:00) Singh, Priyanka; Yadav, Radheshyam; Verma, Malkhey; Chhabra, RavindreshImatinib (IM) resistance is considered to be a significant challenge in the management of chronic myeloid leukemia (CML). Previous studies have reported that hsa-miR-145-5p and hsa-miR-203a-5p can overcome IM resistance and hsa-miR-203a-5p can alter glutathione metabolism in IM-resistant cells. The purpose of this study was to examine whether hsa-miR-145-5p or hsa-miR-203a-5p counters IM resistance by targeting the overall metabolic profile of IM-resistant K562 cells. The metablic profiling of cell lysates obtained from IM-sensitive, IM-resistant, and miR-transfected IM-resistant K562 cells was carried out using the GC-MS technique. Overall, 75 major metabolites were detected, of which 32 were present in all samples. The pathway analysis of MetaboAnalyst 5.0 revealed that the majorly enriched pathways included glucose metabolism, fatty acid biosynthesis, lipogenesis, and nucleotide metabolism. Eleven of identified metabolites, l-glutamine, l-glutamic acid, l-lactic acid, phosphoric acid, 9,12-octadecadienoic acid, 9-octadecenoic acid, myristic acid, palmitic acid, cholesterol, and ?-alanine, appeared in enriched pathways. IM-resistant cells had comparatively higher concentrations of all of these metabolites. Notably, the introduction of hsa-miR-145-5p or hsa-miR-203a-5p into resistant cells resulted in a decrease in levels of these metabolites. The efficacy of miR-203a-5p was particularly remarkable in comparison with miR-145-5p, as evidenced by partial least-squares-discriminant analysis (PLS-DA), which showed a high level of similarity in metabolic profile between IM-sensitive K562 cells and IM-resistant cells transfected with hsa-miR-203a-5p. The results indicate that GC-MS-based metabolic profiling has the potential to distinguish between drug-resistant and -sensitive cells. This approach can also be used to routinely monitor therapeutic response in drug-resistant patients, thus, enabling personalized therapy. � 2023 American Society for Mass Spectrometry. Published by American Chemical Society. All rights reserved.Item Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize (Zea mays) under lead stress(Elsevier Ltd, 2018) Pidatala, V.R.; Li, K.; Sarkar, D.; Wusirika, R.; Datta, R.Lead (Pb) contamination of residential soils in United States is attributed to use of Pb based paints prior to 1978 and their deterioration and accumulation in surface soils. Exposure to Pb due to ingestion and inhalation of Pb laden soil and dust causes neurological disorders, renal disorders, developmental and behavioral problems, particularly in children under the age of six. Vetiver grass is one of the leading choices for Pb remediation due to its ability to hyperaccumulate Pb, in addition to high biomass. In order to understand the effect of Pb on vetiver metabolic pathways, we compared the global metabolic changes in vetiver with that of maize, a Pb susceptible plant under Pb stress. Vetiver showed massive increase in levels of key metabolites in response to Pb, including amino acids, organic acids and coenzymes. Maize showed very modest increase in some of the same metabolites, and no change in others. The results provide the first indication of the difference in metabolic response of the hyperaccumulator, vetiver to lead stress as compared to maize. ? 2017 Elsevier LtdItem Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil(Elsevier B.V., 2017) Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika; Dhawi, F.; Datta, R.; Ramakrishna, W.Sorghum is an economically important crop, a model system for gene discovery and a biofuel source. Sorghum seedlings were subjected to three microbial treatments, plant growth promoting bacteria (B), arbuscular mycorrhizal (AM) fungi mix with two Glomus species (G. aggregatum and G. etunicatum), Funelliformis mosseae and Rhizophagus irregularis (My), and B and My combined (My + B). Proteomic analysis was conducted followed by integration with metabolite, plant biomass and nutrient data. Out of 366 differentially expressed proteins in sorghum roots, 44 upregulated proteins overlapping among three treatment groups showed positive correlation with sorghum biomass or element uptake or both. Proteins upregulated only in B group include asparagine synthetase which showed negative correlation with biomass and uptake of elements. Phosphoribosyl amino imidazole succinocarboxamide protein with more than 50-fold change in My and My + B groups correlated positively with Ca, Cu, S and sucrose levels in roots. The B group showed the highest number of upregulated proteins among the three groups with negative correlation with sorghum biomass and element uptake. KEGG pathway analysis identified carbon fixation as the unique pathway associated with common upregulated proteins while biosynthesis of amino acids and fatty acid degradation were associated with common downregulated proteins. Protein-protein interaction analysis using STRING identified a major network with thirteen downregulated proteins. These findings suggest that plant-growth-promoting-bacteria alone or in combination with mycorrhiza enhanced radical scavenging system and increased levels of specific proteins thereby shifting the metabolism towards synthesis of carbohydrates resulting in sorghum biomass increase and uptake of nutrients. ? 2016Item Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil(Elsevier Ltd, 2016) Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika; Dhawi, F.; Datta, R.; Ramakrishna, W.The main challenge for plants growing in nutrient poor, contaminated soil is biomass reduction, nutrient deficiency and presence of heavy metals. Our aim is to overcome these challenges using different microbial combinations in mining-impacted soil and focus on their physiological and biochemical impacts on a model plant system, which has multiple applications. In the current study, sorghum BTx623 seedlings grown in mining-impacted soil in greenhouse were subjected to plant growth promoting bacteria (PGPB or B) alone, PGPB with arbuscular mycorrhizal fungi (My), My alone and control group with no treatment. Root biomass and uptake of most of the elements showed significant increase in all treatment groups in comparison with control. Mycorrhiza group showed the best effect followed by My + B and B groups for uptake of majority of the elements by roots. On the contrary, biomass of both shoot and root was more influenced by B treatment than My + B and My treatments. Metabolomics identified compounds whose levels changed in roots of treatment groups significantly in comparison to control. Upregulation of stearic acid, sorbitol, sebacic acid and ferulic acid correlated positively with biomass and uptake of almost all elements. Two biochemical pathways, fatty acid biosynthesis and galactose metabolism, were regulated in all treatment groups. Three common pathways were upregulated only in My and My + B groups. Our results suggest that PGPB enhanced metabolic activities which resulted in increase in element uptake and sorghum root biomass whether accompanied with mycorrhiza or used solely. ? 2016 Elsevier Ltd.