School Of Health Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102
Browse
3 results
Search Results
Item Neurodegenerative diseases and brain delivery of therapeutics: Bridging the gap using dendrimers(Editions de Sante, 2023-08-26T00:00:00) Kaur, Amandeep; Singh, Navneet; Kaur, Harmanpreet; Kakoty, Violina; Sharma, Deep Shikha; Khursheed, Rubiya; Babu, Molakpogu Ravindra; Harish, Vancha; Gupta, Gaurav; Gulati, Monica; Kumar, Puneet; Dureja, Harish; Alharthi, Nahed S.; Khan, Farhan R.; Rehman, Zia ur; Hakami, Mohammed Ageeli; Patel, Mrunali; Patel, Rashmin; Zandi, Milad; Vishwas, Sukriti; Dua, Kamal; Singh, Sachin KumarNeurodegenerative diseases (NDs) continue to burden human lives and economic conditions. They continue to challenge the healthcare system due to the associated physiological barriers. Traditional treatment approaches are associated with symptomatic relief and are ineffective in the long run. Dendrimers stand out amongst other nanocarriers due to ease of surface modifications, internal encapsulation, and nanoscale uniformity of the molecule. Moreover, their internal core can encapsulate drug through electrostatic interactions. These are stable carriers in the nanometer size range. These either act as therapeutic agents per se or deliver the target drug across the blood-brain barrier while minimizing toxicity. Emerging as a promising non-invasive approach, they demonstrate the capability to interfere with in-vivo protein aggregation, typically associated with neurodegeneration. They assist via exerting various neuroprotective roles, such as in oxidative stress, neuroinflammation, inhibiting certain biochemical parameters, altering protein misfolding and aggregation, etc. However, certain limitations are associated with their elimination and cytotoxicity. The investigation revealed the masking of exposed cationic surfaces of dendrimers with inert substances, such as polyethylene glycol to limit their cytotoxicity. This review describes the incidences and pathophysiology of several NDs, properties, and methods of dendrimer synthesis, followed by various research to explore dendrimers potential to treat NDs. � 2023 Elsevier B.V.Item Neuroprotective effect of nerolidol in traumatic brain injury associated behavioural comorbidities in rats(Oxford University Press, 2020-11-26T00:00:00) Kaur, Amandeep; Jaiswal, Gagandeep; Brar, Jasdeep; Kumar, PuneetTraumatic brain injury (TBI) is an insult to the brain from an external mechanical force, leading to temporary/permanent secondary injuries, i.e. impairment of cognitive, physical, and psycho-social functions with altered consciousness. The leading mechanism responsible for neuronal damage following TBI is an increase in oxidative reactions initiated by free radicals generated by the injury along with various other mechanisms. Nerolidol is reported to have potent antioxidant and anti-neuroinflammatory properties. The present study was designed to explore the neuroprotective effect of nerolidol in weight-drop-induced TBI in rats. Animals were injured on the 1st day by dropping a free-falling weight of 200 gm from a height of 1 m through a guide pipe onto the exposed skull. After 14 days of injury, nerolidol (25, 50, and 100 mg/kg, i.p.) treatment was given for the next 14 days. Locomotor activity and motor coordination were evaluated using an actophotometer and rotarod, respectively. Cognitive impairment was observed through the Morris Water Maze and Object Recognition Test. On the 29th day, animals were sacrificed, and their brains were collected for the biochemical estimation. The weight drop model significantly decreased locomotor activity, motor coordination, increased Acetylcholinesterase (AChE) activity, oxidative stress, and induced cognitive deficits in TBI rats. Nerolidol significantly improved locomotor activity, reversed motor incoordination and cognitive impairment, and reduced the AChE activity and oxidative/nitrosative stress. The present study demonstrates the promising neuroprotective effects of nerolidol, which might improve the quality of life of TBI patients. � 2021 The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.Item Assessment of soybean inhibitor as a biopesticide against melon fruit fly, Bactrocera cucurbitae (Coquillett)(Springer Berlin Heidelberg, 2017) Kaur, Harpreet; Kaur, Amandeep; Kaur, Amrit Pal; Rup, Pushpinder J.; Sohal, Satwinder K.In the current study, the soybean trypsin?chymotrypsin inhibitor (Bowman?Birk Inhibitor, SBBI) was tested against Bactrocera cucurbitae (Coquillett), a major pest of cucurbit crops. Bioassays conducted using different concentrations (12.5, 25, 50, 100 and 200?ppm) revealed a detrimental effect of the inhibitor on the growth and development of the second instar larvae of the melon fruit fly. SBBI prolonged the larval and total development period and reduced the percentage pupation and emergence. Enzymatic assays of proteases conducted at three time intervals using the LC40 (59?ppm) concentration of SBBI showed an inhibitory effect on trypsin activity, whereas an increase was observed in the activity of chymotrypsin, elastase and leucine aminopeptidase. Among the enzymes involved in detoxification, antioxidant and general metabolism, an increase was observed in the activity of catalases, and acid and alkaline phosphatases at most treatment intervals. The activity of esterases was induced only with prolonged treatment whereas that of glutathione S-transferases was suppressed in larvae treated with SBBI. The findings revealed the potential of SBBI to disrupt the growth of the melon fruit fly. ? 2017, Deutsche Phythomedizinische Gesellschaft.