School Of Health Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Apoptosis and Pharmacological Therapies for Targeting Thereof for Cancer Therapeutics
    (MDPI, 2022-04-08T00:00:00) Singh, Vishakha; Khurana, Amit; Navik, Umashanker; Allawadhi, Prince; Bharani, Kala Kumar; Weiskirchen, Ralf
    Apoptosis is an evolutionarily conserved sequential process of cell death to maintain a homeostatic balance between cell formation and cell death. It is a vital process for normal eukaryotic development as it contributes to the renewal of cells and tissues. Further, it plays a crucial role in the elimination of unnecessary cells through phagocytosis and prevents undesirable immune responses. Apoptosis is regulated by a complex signaling mechanism, which is driven by interactions among several protein families such as caspases, inhibitors of apoptosis proteins, B-cell lymphoma 2 (BCL-2) family proteins, and several other proteases such as perforins and granzyme. The signaling pathway consists of both pro-apoptotic and pro-survival members, which stabilize the selection of cellular survival or death. However, any aberration in this pathway can lead to abnormal cell proliferation, ultimately leading to the development of cancer, autoimmune disorders, etc. This review aims to elaborate on apoptotic signaling pathways and mechanisms, interacting members involved in signaling, and how apoptosis is associated with carcinogenesis, along with insights into targeting apoptosis for disease resolution. � 2022 by the authors.
  • Item
    ALK and ERBB2 Protein Inhibition is Involved in the Prevention of Lung Cancer Development by Vincamine
    (Bentham Science Publishers, 2023-04-13T00:00:00) Verma, Aarti; Yadav, Poonam; Rajput, Sonu; Verma, Saloni; Arora, Sahil; Kumar, Raj; Bhatti, Jasvinder Singh; Khurana, Amit; Navik, Umashanker
    Background: According to the WHO report of 2022, 2.21 million new cases and 1.80 million deaths were reported for lung cancer in the year 2020. Therefore, there is an urgent need to explore novel, safe, and effective therapeutic interventions for lung cancer. Objective: To find the potential targets of vincamine using a network pharmacology approach and docking studies and to evaluate the anti-cancer effect of vincamine on A549 cell line. Methods: Hence, in the present study, we explored the anti-cancer potential of vincamine by using network pharma-cology, molecular docking, and in vitro approaches. Network pharmacology demonstrated that the most common targets of vincamine are G-protein coupled receptors, cytosolic proteins, and enzymes. Among these targets, two targets, ALK and ERBB2 protein, were common between vincamine and non-small cell lung cancer. Results: We discovered a link between these two targets and their companion proteins, as well as cancer-related pathways. In addition, a docking investigation between the ligand for vincamine and two targeted genes revealed a strong affinity toward these targeted proteins. Further, the in vitro study demonstrated that vincamine treatment for 72 h led to dose-dependent (0-500 ?M) cytotoxicity on the A549 lung cancer cell line with an IC50 value of 291.7 ??. The wound-healing assay showed that vincamine treatment (150 and 300 ?M) significantly inhibited cell migration and invasion. Interestingly, acridine orange/ethidium bromide dual staining demonstrated that vincamine treatment induces apoptosis in A549 cells. Additionally, the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay showed an increased level of reactive oxygen species (ROS) after the vincamine treatment, indicating ROS-mediated apoptosis in A549 cells. Conclusion: Altogether, based on our findings, we hypothesize that vincamine-induced apoptosis of lung cancer cells via ALK and ERBB2 protein modulation may be an attractive futuristic strategy for managing lung cancer in combination with chemotherapeutic agents to obtain synergistic effects with reduced side effects. � 2023 Bentham Science Publishers.