School Of Health Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102
Browse
2 results
Search Results
Item Dysregulated autophagy: A key player in the pathophysiology of type 2 diabetes and its complications(Elsevier B.V., 2023-02-14T00:00:00) Sehrawat, Abhishek; Mishra, Jayapriya; Mastana, Sarabjit Singh; Navik, Umashanker; Bhatti, Gurjit Kaur; Reddy, P. Hemachandra; Bhatti, Jasvinder SinghAutophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of ?-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications. � 2023 Elsevier B.V.Item Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives(Elsevier Inc., 2022-04-07T00:00:00) Bhatti, Jasvinder Singh; Sehrawat, Abhishek; Mishra, Jayapriya; Sidhu, Inderpal Singh; Navik, Umashanker; Khullar, Naina; Kumar, Shashank; Bhatti, Gurjit Kaur; Reddy, P. HemachandraType 2 diabetes (T2DM) is a persistent metabolic disorder rising rapidly worldwide. It is characterized by pancreatic insulin resistance and ?-cell dysfunction. Hyperglycemia induced reactive oxygen species (ROS) production and oxidative stress are correlated with the pathogenesis and progression of this metabolic disease. To counteract the harmful effects of ROS, endogenous antioxidants of the body or exogenous antioxidants neutralise it and maintain bodily homeostasis. Under hyperglycemic conditions, the imbalance between the cellular antioxidant system and ROS production results in oxidative stress, which subsequently results in the development of diabetes. These ROS are produced in the endoplasmic reticulum, phagocytic cells and peroxisomes, with the mitochondrial electron transport chain (ETC) playing a pivotal role. The exacerbated ROS production can directly cause structural and functional modifications in proteins, lipids and nucleic acids. It also modulates several intracellular signaling pathways that lead to insulin resistance and impairment of ?-cell function. In addition, the hyperglycemia-induced ROS production contributes to micro- and macro-vascular diabetic complications. Various in-vivo and in-vitro studies have demonstrated the anti-oxidative effects of natural products and their derived bioactive compounds. However, there is conflicting clinical evidence on the beneficial effects of these antioxidant therapies in diabetes prevention. This review article focused on the multifaceted role of oxidative stress caused by ROS overproduction in diabetes and related complications and possible antioxidative therapeutic strategies targeting ROS in this disease. � 2022 Elsevier Inc.