School Of Health Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Exogenous fetuin-A protects against sepsis-induced myocardial injury by inhibiting oxidative stress and inflammation in mice
    (John Wiley and Sons Inc, 2023-01-17T00:00:00) Sidheeque Hassan, V.; Hanifa, Mohd; Navik, Umashanker; Bali, Anjana
    Sepsis-induced myocardial injury is a consequence of septicemia and is one of the major causes of death in intensive care units. A serum glycoprotein called fetuin-A is secreted largely by the liver, tongue, placenta, and adipose tissue. Fetuin-A has a variety of biological and pharmacological properties. The anti-inflammatory and antioxidant glycoprotein fetuin-A has shown its efficacy in a number of inflammatory disorders including sepsis. However, its protective role against sepsis-induced myocardial injury remains elusive. The purpose of this work is to explore the role of fetuin-A in mouse models of myocardial injury brought on by cecal ligation and puncture (CLP). CLP significantly induced the myocardial injury assessed in terms of elevated myocardial markers (serum CK-MB, cTnI levels), inflammatory markers (IL-6, TNF-?) in the serum, and oxidative stress markers (increased MDA levels and decreased reduced glutathione) in heart tissue homogenate following 24 h of ligation and puncture. Further, hematoxylin and eosin (H&E) staining showed considerable histological alterations in the myocardial tissue of sepsis-developed mice. Interestingly, fetuin-A pretreatment (50 and 100 mg/kg) for 4 days before the CLP procedure significantly improved the myocardial injury and was evaluated in perspective of a reduction in the CK-MB, cTnI levels, IL-6, and TNF-? in sepsis-developed animals. Fetuin-A pretreatment significantly attenuated the oxidative stress and improved the myocardial morphology in a dose-dependent manner. The present study provides preliminary evidence that fetuin-A exerts protection against sepsis-induced cardiac dysfunction in vivo via suppression of inflammation and oxidative damage. � 2023 Soci�t� Fran�aise de Pharmacologie et de Th�rapeutique.
  • Item
    L-Methionine supplementation attenuates high-fat fructose diet-induced non-alcoholic steatohepatitis by modulating lipid metabolism, fibrosis, and inflammation in rats
    (Royal Society of Chemistry, 2022-03-31T00:00:00) Navik, Umashanker; Sheth, Vaibhav G.; Sharma, Nisha; Tikoo, Kulbhushan
    Recently, the protective effects of a methionine-rich diet on hepatic oxidative stress and fibrosis have been suggested but not adequately studied. We, therefore, hypothesized that l-methionine supplementation would ameliorate the progression of hepatic injury in a diet-induced non-alcoholic steatohepatitis (NASH) model and aimed to investigate the underlying mechanism. NASH was developed in male Sprague Dawley rats by feeding them with a high-fat-fructose diet (HFFrD) for 10 weeks. The results demonstrated that l-methionine supplementation to NASH rats for 16 weeks improved the glycemic, lipid, and liver function profiles in NASH rats. Histological analysis of liver tissue revealed a remarkable improvement in the three classical lesions of NASH: steatosis, inflammation, and ballooning. Besides, l-methionine supplementation ameliorated the HFFrD-induced enhanced lipogenesis and lipid peroxidation. An anti-inflammatory effect of l-methionine was also observed through the inhibition of the release of proinflammatory cytokines. Furthermore, the hepatic SIRT1/AMPK signaling pathway was associated with the beneficial effects of l-methionine. This study demonstrates that l-methionine supplementation in HFFrD-fed rats improves their liver pathology via regulation of lipogenesis, inflammation, and the SIRT1/AMPK pathway, thus encouraging its clinical evaluation for the treatment of NASH. � 2022 The Royal Society of Chemistry.
  • Item
    Betaine alleviates doxorubicin-induced nephrotoxicity by preventing oxidative insults, inflammation, and fibrosis through the modulation of Nrf2/HO?1/NLRP3 and TGF-? expression
    (John Wiley and Sons Inc, 2023-10-16T00:00:00) Patel, Dhaneshvaree; Yadav, Poonam; Singh, Sumeet K.; Tanwar, Sampat S.; Sehrawat, Abhishek; Khurana, Amit; Bhatti, Jasvinder S.; Navik, Umashanker
    Doxorubicin (Dox) is an anthracycline antibiotic used to treat various cancers and shows severe toxicity in multiple organ systems, including kidneys. Evidence shows that betaine's antioxidant and anti-inflammatory properties could prevent the onset of several disorders. Hence, the present study aims to investigate the therapeutic potential of betaine on Dox-induced nephrotoxicity (DIN). Nephrotoxicity was induced in male Sprague Dawley rats using Dox at a dose of 4 mg/kg (cumulative dose: 20 mg/kg) by the intraperitoneal route and cotreated with betaine through oral gavage (200 and 400 mg/kg) for 28 days. At the end of the experiment, biochemical, oxidative stress parameters, histopathology, and qRT-PCR were performed. DIN was indicated by elevated serum creatinine, urea, and decreased albumin levels representing kidney damage; the histopathological lesions (increased capsular space, renal tubule damage, and fibrosis) in renal tissues supported these biochemical findings. Interestingly, betaine treatment improves these alterations in Dox-treated rats. Further, betaine treatment decreases the lipid peroxidation and nitrite concentration and increases the superoxide dismutases and catalase enzyme concentration in Dox-treated rats. Fascinatingly, at the molecular level, DIN in rats shows upregulation of the Nrf2/HO-1 gene, while betaine treatment attenuated its expression along with the downregulation of inflammatory genes (NLRP3, TLR-4, TNF-?, and IL-6) and fibrosis-related genes (TGF-? and Acta2) expression in Dox-treated rats. These results showed that betaine has reno-protective properties by reducing inflammatory and fibrotic mediators and enhancing antioxidant capacity in the renal tissue of rats treated with Dox. We believe betaine can be exploited as a dietary supplement to attenuate DIN. � 2023 Wiley Periodicals LLC.