School Of Health Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102

Browse

Search Results

Now showing 1 - 10 of 15
  • Item
    Advancing Cancer Immunotherapy: The Potential of mRNA Vaccines As a Promising Therapeutic Approach
    (John Wiley and Sons Inc, 2023-10-04T00:00:00) Goyal, Falak; Chattopadhyay, Anandini; Navik, Umashanker; Jain, Aklank; Reddy, P. Hemachandra; Bhatti, Gurjit Kaur; Bhatti, Jasvinder Singh
    mRNA vaccines have long been recognized for their ability to induce robust immune responses. The discovery that mRNA vaccines may also contribute to antitumor immunity has made them a promising therapeutic approach against cancer. Recent advances in understanding of immune system are precious in developing therapeutic strategies that target pathways involved in tumor survival and progression, leading to the most reliable therapeutic strategies in cancer treatment history. Among all traditional cancer treatments, cancer immunotherapies are less toxic and more effective, even in advanced or recurrent stages of cancer. Recent advancements in genomics and machine learning algorithms give new insight into vaccine development. mRNA vaccines are designed to interfere with stimulator of interferon genes (STING) and tumor-infiltrating lymphocytes pathways, activating more CD8+ T-cells involved in destroying tumor cells and inhibiting tumor growth. A stronger immune response can be achieved by incorporating immunological adjuvants alongside mRNA. Nonformulated or vehicle-based mRNA vaccines, when combined with adjuvants, efficiently express tumor antigens through antigen-presenting cells and stimulate both innate and adaptive immune responses. Codelivery with additional immunotherapeutic agents, such as checkpoint inhibitors, further enhances the efficacy of mRNA vaccines. This article focuses on the current clinical approaches and challenges to consider when developing mRNA-based vaccine technology for cancer treatment. � 2023 Wiley-VCH GmbH.
  • Item
    Gut microbiota dysbiosis and Huntington's disease: Exploring the gut-brain axis and novel microbiota-based interventions
    (Elsevier Inc., 2023-06-24T00:00:00) Sharma, Garvita; Biswas, Shristi Saroj; Mishra, Jayapriya; Navik, Umashanker; Kandimalla, Ramesh; Reddy, P. Hemachandra; Bhatti, Gurjit Kaur; Bhatti, Jasvinder Singh
    Huntington's disease (HD) is a complex progressive neurodegenerative disorder affected by genetic, environmental, and metabolic factors contributing to its pathogenesis. Gut dysbiosis is termed as the alterations of intestinal microbial profile. Emerging research has highlighted the pivotal role of gut dysbiosis in HD, focusing on the gut-brain axis as a novel research parameter in science. This review article provides a comprehensive overview of gut microbiota dysbiosis and its relationship with HD and its pathogenesis along with the future challenges and opportunities. The focuses on the essential mechanisms which link gut dysbiosis to HD pathophysiology including neuroinflammation, immune system dysregulation, altered metabolites composition, and neurotransmitter imbalances. We also explored the impacts of gut dysbiosis on HD onset, severity, and symptoms such as cognitive decline, motor dysfunction, and psychiatric symptoms. Furthermore, we highlight recent advances in therapeutics including microbiota-based therapeutic approaches, including dietary interventions, prebiotics, probiotics, fecal microbiota transplantation, and combination therapies with conventional HD treatments and their applications in managing HD. The future challenges are also highlighted as the heterogeneity of gut microbiota, interindividual variability, establishing causality between gut dysbiosis and HD, identifying optimal therapeutic targets and strategies, and ensuring the long-term safety and efficacy of microbiota-based interventions. This review provides a better understanding of the potential role of gut microbiota in HD pathogenesis and guides the development of novel therapeutic approaches. � 2023 Elsevier Inc.
  • Item
    Dysregulated autophagy: A key player in the pathophysiology of type 2 diabetes and its complications
    (Elsevier B.V., 2023-02-14T00:00:00) Sehrawat, Abhishek; Mishra, Jayapriya; Mastana, Sarabjit Singh; Navik, Umashanker; Bhatti, Gurjit Kaur; Reddy, P. Hemachandra; Bhatti, Jasvinder Singh
    Autophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of ?-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications. � 2023 Elsevier B.V.
  • Item
    Targeting Mitochondria as a Novel Disease-Modifying Therapeutic Strategy in Cancer
    (Springer Singapore, 2022-09-28T00:00:00) Bhatti, Gurjit Kaur; Pahwa, Paras; Gupta, Anshika; Sidhu, Inderpal Singh; Navik, Uma Shanker; Reddy, P. Hemachandra; Bhatti, Jasvinder Singh
    Mitochondria are essential for the metabolism of energy, regulation of apoptosis, and cell signaling. Overproduction of reactive oxidation species (ROS) in mitochondria is one of the indications of cancer cells. Moreover, this boosts the proliferation of cancerous cells by causing genomic instability and altering gene expressions. Mitochondrial and nuclear DNA mutations caused by oxidative damage impair the mechanism of oxidative phosphorylation and can lead to more mitochondrial ROS output, genome instability, and cancer development. The classic approach to target mitochondria of cancerous cells with novel targeted therapeutics helps in targeting the mitochondrial apoptotic proteins and changing energy metabolism. A key benefit of selective drug delivery is that it reduces the drug�s toxicity and increases specificity. A better understanding of the mitochondrial role in tumor growth will help design more therapeutic agents with better selectivity. � Springer Nature Singapore Pte Ltd. 2022.
  • Item
    Targeting Mitochondria as a Novel Disease-Modifying Therapeutic Strategy in Cancer
    (Springer Nature, 2022-01-31T00:00:00) Bhatti, Gurjit Kaur; Pahwa, Paras; Gupta, Anshika; Navik, Uma Shanker; Reddy, P. Hemachandra; Bhatti, Jasvinder Singh
    Mitochondria are important for the metabolism of energy, regulation of apoptosis and cell signaling. Overproduction of reactive oxidation species (ROS) in mitochondria is one of the indications of cancer cells; moreover, this boosts the proliferation of cancerous cells by causing genomic instability and altering gene expressions. Mitochondrial and nuclear DNA mutations, caused by oxidative damage which impairs the mechanism of oxidative phosphorylation, can lead to more mitochondrial ROS output, genome instability, and the development of the cancer. Classic approach to target mitochondria of cancerous cells with novel-targeted therapeutics helps in targeting the mitochondrial apoptotic proteins and changing energy metabolism. Key benefit of selective drug delivery is it reduces the toxicity of drug and increases specificity. Better understanding of mitochondrial role in tumor growth will help to design more therapeutic agents with better selectivity. � Springer Nature Singapore Pte Ltd. 2022.
  • Item
    Emerging role of non?coding RNA in health and disease
    (Springer, 2021-04-21T00:00:00) Bhatti, Gurjit Kaur; Khullar, Naina; Sidhu, Inderpal Singh; Navik, Uma Shanker; Reddy, Arubala P.; Reddy, P. Hemachandra; Bhatti, Jasvinder Singh
    Human diseases have always been a significant turf of concern since the origin of mankind. It is cardinal to know the cause, treatment, and cure for every disease condition. With the advent and advancement in technology, the molecular arena at the microscopic level to study the mechanism, progression, and therapy is more rational and authentic pave than a macroscopic approach. Non-coding RNAs (ncRNAs) have now emerged as indispensable players in the diagnosis, development, and therapeutics of every abnormality concerning physiology, pathology, genetics, epigenetics, oncology, and developmental diseases. This is a comprehensive attempt to collate all the existing and proven strategies, techniques, mechanisms of genetic disorders including Silver Russell Syndrome, Fascio- scapula humeral muscular dystrophy, cardiovascular diseases (atherosclerosis, cardiac fibrosis, hypertension, etc.), neurodegenerative diseases (Spino-cerebral ataxia type 7, Spino-cerebral ataxia type 8, Spinal muscular atrophy, Opitz-Kaveggia syndrome, etc.) cancers (cervix, breast, lung cancer, etc.), and infectious diseases (viral) studied so far. This article encompasses discovery, biogenesis, classification, and evolutionary prospects of the existence of this junk RNA along with the integrated networks involving chromatin remodelling, dosage compensation, genome imprinting, splicing regulation, post-translational regulation and proteomics. In conclusion, all the major human diseases are discussed with a facilitated technology transfer, advancements, loopholes, and tentative future research prospects have also been proposed. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Nanotheranostics revolutionizing neurodegenerative diseases: From precision diagnosis to targeted therapies
    (Editions de Sante, 2023-10-16T00:00:00) Joshi, Riya; Missong, Hemi; Mishra, Jayapriya; Kaur, Satinder; Saini, Sumant; Kandimalla, Ramesh; Reddy, P. Hemachandra; Babu, Arockia; Bhatti, Gurjit Kaur; Bhatti, Jasvinder Singh
    Neurodegenerative disorders pose a significant burden on global healthcare systems, and the development of effective therapeutics and diagnostics remains a critical challenge. Nanotheranostics, the integration of nanotechnology-based diagnostic and therapeutic modalities, has emerged as a promising strategy to address these challenges. This review article provides a comprehensive analysis of the latest advancements in nanotheranostics for the treatment and monitoring of neurological disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The application of targeted drug delivery systems, gene therapy, and non-invasive imaging techniques are explored in-depth, highlighting the potential of nanotheranostics to revolutionize the management of neurological disorders. The article delves into the design and synthesis of various nanocarriers, such as liposomes, dendrimers, and polymeric nanoparticles, which enable the targeted delivery of therapeutic agents across the blood-brain barrier. Gene therapy approaches, including CRISPR/Cas9 and RNA interference demonstrating the potential of nanotheranostics to enable precise genetic modifications in the treatment of neurological disorders. Additionally, non-invasive imaging techniques, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), are examined in the context of their integration with nanotheranostics for real-time monitoring of treatment efficacy and disease progression. The review also identifies current challenges and limitations in the field of nanotheranostics, such as toxicity, immunogenicity, and issues with large-scale production. Furthermore, it outlines future research directions and potential strategies to overcome these limitations, paving the way for the clinical translation of nanotheranostics as next-generation therapeutics in neurological disorders. � 2023
  • Item
    Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease
    (Elsevier B.V., 2023-06-29T00:00:00) Bhatti, Jasvinder Singh; Kaur, Satinder; Mishra, Jayapriya; Dibbanti, Harikrishnareddy; Singh, Arti; Reddy, Arubala P.; Bhatti, Gurjit Kaur; Reddy, P. Hemachandra
    Alzheimer's disease (AD) is a neurodegenerative disease that manifests its pathology through synaptic damage, mitochondrial abnormalities, microRNA deregulation, hormonal imbalance, increased astrocytes & microglia, accumulation of amyloid ? (A?) and phosphorylated Tau in the brains of AD patients. Despite extensive research, the effective treatment of AD is still unknown. Tau hyperphosphorylation and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline in patients with AD. Mitochondrial dysfunction is evidenced by enhanced mitochondrial fragmentation, impaired mitochondrial dynamics, mitochondrial biogenesis and defective mitophagy in AD. Hence, targeting mitochondrial proteins might be a promising therapeutic strategy in treating AD. Recently, dynamin-related protein 1 (Drp1), a mitochondrial fission protein, has gained attention due to its interactions with A? and hyperphosphorylated Tau, altering mitochondrial morphology, dynamics, and bioenergetics. These interactions affect ATP production in mitochondria. A reduction in Drp1 GTPase activity protects against neurodegeneration in AD models. This article provides a comprehensive overview of Drp1's involvement in oxidative damage, apoptosis, mitophagy, and axonal transport of mitochondria. We also highlighted the interaction of Drp1 with A? and Tau, which may contribute to AD progression. In conclusion, targeting Drp1 could be a potential therapeutic approach for preventing AD pathology. � 2023
  • Item
    Stem cells in the treatment of Alzheimer's disease � Promises and pitfalls
    (Elsevier B.V., 2023-04-06T00:00:00) Bhatti, Jasvinder Singh; Khullar, Naina; Mishra, Jayapriya; Kaur, Satinder; Sehrawat, Abhishek; Sharma, Eva; Bhatti, Gurjit Kaur; Selman, Ashley; Reddy, P. Hemachandra
    Alzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-? and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology. � 2023 Elsevier B.V.
  • Item
    Progression of pre-rheumatoid arthritis to clinical disease of joints: Potential role of mesenchymal stem cells
    (Elsevier Inc., 2023-03-28T00:00:00) Sardana, Yogesh; Bhatti, Gurjit Kaur; Singh, Charan; Sharma, Pushpender Kumar; Reddy, P. Hemachandra; Bhatti, Jasvinder Singh
    Rheumatoid arthritis (RA) related autoimmunity is developed at mucosal sites due to the interplay between genetic risk factors and environmental triggers. The pre-RA phase that leads to anti-citrullinated protein antibodies, rheumatoid factor, and other autoantibodies spread in the systemic circulation may not affect articular tissue for years until a mysterious second hit triggers the localization of RA-related autoimmunity in joints. Several players in the joint microenvironment mediate the synovial innate and adaptive immunological processes, eventually leading to clinical synovitis. There still exists a gap in the early phase of RA pathogenesis, i.e., the progression of diseases from the systemic circulation to joints. The lack of better understanding of these events results in the inability to answer questions about why only after a certain point of time the disease appears in joints and why in some cases, it simply remains latent and doesn't affect joints at all. In the current review, we focused on the immunomodulatory and regenerative role of mesenchymal stem cells and associated exosomes in RA pathology. We also highlighted the age-related dysregulations in activities of mesenchymal stem cells and how that might trigger homing of systemic autoimmunity to joints. � 2023 Elsevier Inc.