School Of Health Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    L-Methionine supplementation attenuates high-fat fructose diet-induced non-alcoholic steatohepatitis by modulating lipid metabolism, fibrosis, and inflammation in rats
    (Royal Society of Chemistry, 2022-03-31T00:00:00) Navik, Umashanker; Sheth, Vaibhav G.; Sharma, Nisha; Tikoo, Kulbhushan
    Recently, the protective effects of a methionine-rich diet on hepatic oxidative stress and fibrosis have been suggested but not adequately studied. We, therefore, hypothesized that l-methionine supplementation would ameliorate the progression of hepatic injury in a diet-induced non-alcoholic steatohepatitis (NASH) model and aimed to investigate the underlying mechanism. NASH was developed in male Sprague Dawley rats by feeding them with a high-fat-fructose diet (HFFrD) for 10 weeks. The results demonstrated that l-methionine supplementation to NASH rats for 16 weeks improved the glycemic, lipid, and liver function profiles in NASH rats. Histological analysis of liver tissue revealed a remarkable improvement in the three classical lesions of NASH: steatosis, inflammation, and ballooning. Besides, l-methionine supplementation ameliorated the HFFrD-induced enhanced lipogenesis and lipid peroxidation. An anti-inflammatory effect of l-methionine was also observed through the inhibition of the release of proinflammatory cytokines. Furthermore, the hepatic SIRT1/AMPK signaling pathway was associated with the beneficial effects of l-methionine. This study demonstrates that l-methionine supplementation in HFFrD-fed rats improves their liver pathology via regulation of lipogenesis, inflammation, and the SIRT1/AMPK pathway, thus encouraging its clinical evaluation for the treatment of NASH. � 2022 The Royal Society of Chemistry.
  • Item
    Decorin as a possible strategy for the amelioration of COVID-19
    (Churchill Livingstone, 2021-05-20T00:00:00) Allawadhi, Prince; Singh, Vishakha; Khurana, Isha; Rawat, Pushkar Singh; Renushe, Akshata Patangrao; Khurana, Amit; Navik, Umashanker; Allwadhi, Sachin; Kumar Karlapudi, Satish; Banothu, Anil Kumar; Bharani, Kala Kumar
    Coronavirus pandemic has emerged as an extraordinary healthcare crisis in modern times. The SARS-CoV-2 novel coronavirus has high transmission rate, is more aggressive and virulent in comparison to previously known coronaviruses. It primarily attacks the respiratory system by inducing cytokine storm that causes systemic inflammation and pulmonary fibrosis. Decorin is a pluripotent molecule belonging to a leucine rich proteoglycan group that exerts critical role in extracellular matrix (ECM) assembly and regulates cell growth, adhesion, proliferation, inflammation, and fibrogenesis. Interestingly, decorin has potent anti-inflammatory, cytokine inhibitory, and anti-fibrillogenesis effects which make it a potential drug candidate against the COVID-19 related complications especially in the context of lung fibrosis. Herein, we postulate that owing to its distinctive pharmacological actions and immunomodulatory effect, decorin can be a promising preclinical therapeutic agent for the therapy of COVID-19. � 2021 Elsevier Ltd
  • Item
    Mitochondrial miRNA as epigenomic signatures: Visualizing aging-associated heart diseases through a new lens
    (Elsevier Ireland Ltd, 2023-02-11T00:00:00) Bhatti, Jasvinder Singh; Khullar, Naina; Vijayvergiya, Rajesh; Navik, Umashanker; Bhatti, Gurjit Kaur; Reddy, P. Hemachandra
    Aging bears many hard knocks, but heart disorders earn a particular allusion, being the most widespread. Cardiovascular diseases (CVDs) are becoming the biggest concern to mankind due to sundry health conditions directly or indirectly related to heart-linked abnormalities. Scientists know that mitochondria play a critical role in the pathophysiology of cardiac diseases. Both environment and genetics play an essential role in modulating and controlling mitochondrial functions. Even a minor abnormality may prove detrimental to heart function. Advanced age combined with an unhealthy lifestyle can cause most cardiomyocytes to be replaced by fibrotic tissue which upsets the conducting system and leads to arrhythmias. An aging heart encounters far more heart-associated comorbidities than a young heart. Many state-of-the-art technologies and procedures are already being used to prevent and treat heart attacks worldwide. However, it remains a mystery when this heart bomb would explode because it lacks an alarm. This calls for a novel and effective strategy for timely diagnosis and a sure-fire treatment. This review article provides a comprehensive overture of prospective potentials of mitochondrial miRNAs that predict complicated and interconnected pathways concerning heart ailments and signature compilations of relevant miRNAs as biomarkers to plot the role of miRNAs in epigenomics. This article suggests that analysis of DNA methylation patterns in age-associated heart diseases may determine age-impelled biomarkers of heart disease. � 2023 Elsevier B.V.
  • Item
    Glucagon-like peptide 1 and fibroblast growth factor-21 in non-alcoholic steatohepatitis: An experimental to clinical perspective
    (Academic Press, 2022-09-06T00:00:00) Yadav, Poonam; Khurana, Amit; Bhatti, Jasvinder Singh; Weiskirchen, Ralf; Navik, Umashanker
    Non-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), which slowly progresses toward cirrhosis and finally leads to the development of hepatocellular carcinoma. Obesity, insulin resistance, type 2 diabetes mellitus and the metabolic syndrome are major risk factors contributing to NAFLD. Targeting these risk factors is a rational option for inhibiting NASH progression. In addition, NASH could be treated with therapies that target the metabolic abnormalities causing disease pathogenesis (such as de novo lipogenesis and insulin resistance) as well with medications targeting downstream processes such as cellular damage, apoptosis, inflammation, and fibrosis. Glucagon-like peptide (GLP-1), is an incretin hormone dysregulated in both experimental and clinical NASH, which triggers many signaling pathways including fibroblast growth factor (FGF) that augments NASH pathogenesis. Growing evidence indicates that GLP-1 in concert with FGF-21 plays crucial roles in the conservation of glucose and lipid homeostasis in metabolic disorders. In line, GLP-1 stimulation improves hepatic ballooning, steatosis, and fibrosis in NASH. A recent clinical trial on NASH patients showed that the upregulation of FGF-21 decreases liver fibrosis and hepatic steatosis, thus improving the pathogenesis of NASH. Hence, therapeutic targeting of the GLP-1/FGF axis could be therapeutically beneficial for the remission of NASH. This review outlines the significance of the GLP-1/FGF-21 axis in experimental and clinical NASH and highlights the activity of modulators targeting this axis as potential salutary agents for the treatment of NASH. � 2022 Elsevier Ltd