School Of Health Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102
Browse
3 results
Search Results
Item Therapeutic Strategies Targeting Signaling Pathways in Lung Cancer(Springer Nature, 2021-07-02T00:00:00) Bhatti, Gurjit Kaur; Pahwa, Paras; Gupta, Anshika; Navik, Umashanker; Bhatti, Jasvinder SinghRecent knowledge of the role of signaling pathways and their underlying mechanisms in the pathogenesis of several diseases may lead to the development of therapeutic strategies. In the recent time, several drug molecules have been developed which target the cell signaling pathways and may be used in combination with other standard therapies for the synergistic effects in reducing the lung cancer pathophysiology across the world. Further, some of predictive biomarkers have been identified. The current chapter deals with the involvement of signaling pathways in the development of lung cancer and further new therapeutic approaches that intend to pave the way for the development of improved clinical treatment of lung cancer. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021.Item Long non-coding RNAs involved in different steps of cancer metastasis(Springer Science and Business Media Deutschland GmbH, 2022-02-04T00:00:00) Suman, P.; Chhichholiya, Y.; Kaur, P.; Ghosh, S.; Munshi, A.Non-proteincoding transcripts bearing 200 base pairs known as long non-coding RNAs (lncRNAs) play a role in a variety of molecular mechanisms, including cell differentiation, apoptosis and metastasis. Previous studies have suggested that frequently dysregulated lncRNAs play a crucial role in various aspects of cancer metastasis. Metastasis is the main leading cause of death in cancer. The role of lncRNAs in different stages of metastasis is the subject of this review. Based on in vitro and in vivo investigations on metastasis, we categorized lncRNAs into distinct stages of metastasis including angiogenesis, invasion, intravasation, survival in circulation, and extravasation. The involvement of lncRNAs in angiogenesis and invasion has been extensively studied. Here, we comprehensively discuss the role and functions of these lncRNAs with a particular focus on the molecular mechanisms. � 2022, The Author(s), under exclusive licence to Federaci�n de Sociedades Espa�olas de Oncolog�a (FESEO).Item The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies(Springer, 2021-07-16T00:00:00) Chhichholiya, Yogita; Suman, Prabhat; Singh, Sandeep; Munshi, AnjanaBreast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized. � 2021, Springer Science+Business Media, LLC, part of Springer Nature.