School Of Health Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102
Browse
2 results
Search Results
Item Mesenchymal stem cells- an excellent therapeutic agent for cancer(John Wiley and Sons Inc, 2023-05-16T00:00:00) TomyTomcy, Anjilikal; Sindhu, Edakkadath RaghavanDespite rapid advancement in research of diagnostics and therapeutics, cancer is the most dangerous disease-causing millions of deaths worldwide. Many of the conventional anticancer therapies can even lead to developing resistance to therapy and recurrence of cancer. To find a new, alternative treatment strategy for a variety of ailments scientists and researchers have turned their attention to cell therapies and regenerative medicine. Stem cells are now being researched for their extensive potential application in therapy for several incurable illnesses including cancer. One of the most often employed cell types for regenerative medicine is mesenchymal stem cells. Mesenchymal stem cells (MSCs) are considered a promising source of stem cells in personalized cell-based therapies. The inherent tumor tropic and immune-modulatory properties of MSCs can be used to target cancer cells. This review aims to focus on the anticancer properties of MSCs and their effect on different signaling pathways. Later on, we discuss the advantages of engineered MSCs over non-engineered MSCsin cancer therapy. � 2023 John Wiley & Sons Australia, Ltd.Item Comprehensive analysis of culture conditions governing differentiation of MSCs into articular chondrocytes(Newlands Press Ltd, 2023-05-18T00:00:00) Singh, Harsh Vikram; Das, Lakshmana; Malayil, Rhuthuparna; Singh, Tashvinder; Singh, Sandeep; Goyal, Tarun; Munshi, AnjanaTreatment of osteoarthritic patients requires the development of morphologically and mechanically complex hyaline cartilage at the injury site. A tissue engineering approach toward differentiating mesenchymal stem cells into articular chondrocytes has been developed to overcome the drawbacks of conventional therapeutic and surgical procedures. To imitate the native micro and macro environment of articular chondrocytes, cell culture parameters such as oxygen concentration, mechanical stress, scaffold design, and growth factor signalling cascade regulation must be addressed. This review aims to illuminate the path toward developing tissue engineering approaches, accommodating these various parameters and the role these parameters play in regulating chondrogenesis for better articular cartilage development to treat osteoarthritis effectively. � 2023 Future Medicine Ltd.