School Of Health Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Antinociceptive activity of standardized extract of Bacopa monnieri in different pain models of zebrafish
    (Elsevier Ireland Ltd, 2021-08-19T00:00:00) Sharma, Mahima; Gupta, Pankaj Kumar; Gupta, Pankaj; Garabadu, Debapriya
    Ethnopharmacological relevance: Bacopa monnieri L. (Scrophulariaceae) is commonly known as Brahmi and traditionally used as a neuroprotective herbal medicine. Recently, Bacopa monnieri exhibited significant therapeutic activity against animal model of neuropathic pain. However, the therapeutic potential of methanolic extract of Bacopa monnieri in experimental animal model is yet to establish. Aim of the study: The present study was designed to evaluate the anti-nociceptive potential of standardized methanolic extract of Bacopa monnieri in experimental adult zebrafish (Danio rerio) model of pain. Materials and methods: The methanolic extract of Bacopa monnieri (BME) was standardized to bacoside-A using chromatographic method. Subsequently, BME (0.75, 1.25 and 5.0 mg/ml) was evaluated for anti-nociceptive activity using adult zebrafish model. Results: Standardized BME showed antioxidant effect through radical quenching activity in in vitro study. BME at 1.25 mg/ml significantly decreased the nociceptive effect induced by different noxious agents like acetic acid where as BME at 2.5 mg/ml exhibited significant antinociceptive activity against glutamate, formalin, capsaicin, cinnamaldehyde when compared to control and sham group animals. Conclusion: BME exerted antinociceptive activity in adult zebrafish. It could be presumed that BME may involve glutamatergic receptor, ASIC and TRP channel activity in its anti-nociceptive effect. BME could be considered as a potential therapeutic option in the management of pain. � 2021 Elsevier B.V.
  • Item
    Microglia Specific Drug Targeting Using Natural Products for the Regulation of Redox Imbalance in Neurodegeneration
    (Frontiers Media S.A., 2021-04-13T00:00:00) Maurya, Shashank Kumar; Bhattacharya, Neetu; Mishra, Suman; Bhattacharya, Amit; Banerjee, Pratibha; Senapati, Sabyasachi; Mishra, Rajnikant
    Microglia, a type of innate immune cell of the brain, regulates neurogenesis, immunological surveillance, redox imbalance, cognitive and behavioral changes under normal and pathological conditions like Alzheimer�s, Parkinson�s, Multiple sclerosis and traumatic brain injury. Microglia produces a wide variety of cytokines to maintain homeostasis. It also participates in synaptic pruning and regulation of neurons overproduction by phagocytosis of neural precursor cells. The phenotypes of microglia are regulated by the local microenvironment of neurons and astrocytes via interaction with both soluble and membrane-bound mediators. In case of neuron degeneration as observed in acute or chronic neurodegenerative diseases, microglia gets released from the inhibitory effect of neurons and astrocytes, showing activated phenotype either of its dual function. Microglia shows neuroprotective effect by secreting growths factors to heal neurons and clears cell debris through phagocytosis in case of a moderate stimulus. But the same microglia starts releasing pro-inflammatory cytokines like TNF-?, IFN-?, reactive oxygen species (ROS), and nitric oxide (NO), increasing neuroinflammation and redox imbalance in the brain under chronic signals. Therefore, pharmacological targeting of microglia would be a promising strategy in the regulation of neuroinflammation, redox imbalance and oxidative stress in neurodegenerative diseases. Some studies present potentials of natural products like curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane to suppress activation of microglia. These natural products have also been proposed as effective therapeutics to regulate the progression of neurodegenerative diseases. The present review article intends to explain the molecular mechanisms and functions of microglia and molecular dynamics of microglia specific genes and proteins like Iba1 and Tmem119 in neurodegeneration. The possible interventions by curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane on microglia specific protein Iba1 suggest possibility of natural products mediated regulation of microglia phenotypes and its functions to control redox imbalance and neuroinflammation in management of Alzheimer�s, Parkinson�s and Multiple Sclerosis for microglia-mediated therapeutics. � Copyright � 2021 Maurya, Bhattacharya, Mishra, Bhattacharya, Banerjee, Senapati and Mishra.