School Of Health Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/102

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Neurodegenerative diseases and brain delivery of therapeutics: Bridging the gap using dendrimers
    (Editions de Sante, 2023-08-26T00:00:00) Kaur, Amandeep; Singh, Navneet; Kaur, Harmanpreet; Kakoty, Violina; Sharma, Deep Shikha; Khursheed, Rubiya; Babu, Molakpogu Ravindra; Harish, Vancha; Gupta, Gaurav; Gulati, Monica; Kumar, Puneet; Dureja, Harish; Alharthi, Nahed S.; Khan, Farhan R.; Rehman, Zia ur; Hakami, Mohammed Ageeli; Patel, Mrunali; Patel, Rashmin; Zandi, Milad; Vishwas, Sukriti; Dua, Kamal; Singh, Sachin Kumar
    Neurodegenerative diseases (NDs) continue to burden human lives and economic conditions. They continue to challenge the healthcare system due to the associated physiological barriers. Traditional treatment approaches are associated with symptomatic relief and are ineffective in the long run. Dendrimers stand out amongst other nanocarriers due to ease of surface modifications, internal encapsulation, and nanoscale uniformity of the molecule. Moreover, their internal core can encapsulate drug through electrostatic interactions. These are stable carriers in the nanometer size range. These either act as therapeutic agents per se or deliver the target drug across the blood-brain barrier while minimizing toxicity. Emerging as a promising non-invasive approach, they demonstrate the capability to interfere with in-vivo protein aggregation, typically associated with neurodegeneration. They assist via exerting various neuroprotective roles, such as in oxidative stress, neuroinflammation, inhibiting certain biochemical parameters, altering protein misfolding and aggregation, etc. However, certain limitations are associated with their elimination and cytotoxicity. The investigation revealed the masking of exposed cationic surfaces of dendrimers with inert substances, such as polyethylene glycol to limit their cytotoxicity. This review describes the incidences and pathophysiology of several NDs, properties, and methods of dendrimer synthesis, followed by various research to explore dendrimers potential to treat NDs. � 2023 Elsevier B.V.
  • Item
    Nanotheranostics revolutionizing neurodegenerative diseases: From precision diagnosis to targeted therapies
    (Editions de Sante, 2023-10-16T00:00:00) Joshi, Riya; Missong, Hemi; Mishra, Jayapriya; Kaur, Satinder; Saini, Sumant; Kandimalla, Ramesh; Reddy, P. Hemachandra; Babu, Arockia; Bhatti, Gurjit Kaur; Bhatti, Jasvinder Singh
    Neurodegenerative disorders pose a significant burden on global healthcare systems, and the development of effective therapeutics and diagnostics remains a critical challenge. Nanotheranostics, the integration of nanotechnology-based diagnostic and therapeutic modalities, has emerged as a promising strategy to address these challenges. This review article provides a comprehensive analysis of the latest advancements in nanotheranostics for the treatment and monitoring of neurological disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The application of targeted drug delivery systems, gene therapy, and non-invasive imaging techniques are explored in-depth, highlighting the potential of nanotheranostics to revolutionize the management of neurological disorders. The article delves into the design and synthesis of various nanocarriers, such as liposomes, dendrimers, and polymeric nanoparticles, which enable the targeted delivery of therapeutic agents across the blood-brain barrier. Gene therapy approaches, including CRISPR/Cas9 and RNA interference demonstrating the potential of nanotheranostics to enable precise genetic modifications in the treatment of neurological disorders. Additionally, non-invasive imaging techniques, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), are examined in the context of their integration with nanotheranostics for real-time monitoring of treatment efficacy and disease progression. The review also identifies current challenges and limitations in the field of nanotheranostics, such as toxicity, immunogenicity, and issues with large-scale production. Furthermore, it outlines future research directions and potential strategies to overcome these limitations, paving the way for the clinical translation of nanotheranostics as next-generation therapeutics in neurological disorders. � 2023