Department Of Pharmaceutical Sciences and Natural Products

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    Polycystic ovary syndrome: Current scenario and future insights
    (Elsevier Ltd, 2023-11-05T00:00:00) Kulkarni, Swanand; Gupta, Khushi; Ratre, Pooja; Mishra, Pradyumna Kumar; Singh, Yogesh; Biharee, Avadh; Thareja, Suresh
    Polycystic ovary syndrome (PCOS) prevails in approximately 33% of females of reproductive age globally. Although the root cause of the disease is unknown, attempts are made to clinically manage the disturbed hormone levels and symptoms arising due to hyperandrogenism, a hallmark of PCOS. This review presents detailed insights on the etiology, risk factors, current treatment strategies, and challenges therein. Medicinal agents currently in clinical trials and those in the development pipeline are emphasized. The significance of the inclusion of herbal supplements in PCOS and the benefits of improved lifestyle are also explained. Last, emerging therapeutic targets for treating PCOS are elaborated. The present review will assist the research fraternity working in the concerned domain to access significant knowledge associated with PCOS. � 2023 Elsevier Ltd
  • Item
    Developing our knowledge of the quinolone scaffold and its value to anticancer drug design
    (Taylor and Francis Ltd., 2023-08-18T00:00:00) Singh, Yogesh; Bhatia, Neha; Biharee, Avadh; Kulkarni, Swanand; Thareja, Suresh; Monga, Vikramdeep
    Introduction: The quinolone scaffold is a bicyclic benzene-pyridinic ring scaffold with nitrogen at the first position and a carbonyl group at the second or fourth position. It is endowed with a diverse spectrum of pharmacological activities, including antitumor activity, and has progressed into various development phases of clinical trials for their target-specific anticancer activity. Areas covered: The present review covers both classes of quinolones, i.e. quinolin-2(H)-one and quinolin-4(H)-one as anticancer agents, along with their possible mode of binding. Furthermore, their structure-activity relationships, molecular mechanisms, and pharmacokinetic properties are also covered to provide insight into their structural requirements for their rational design as anticancer agents. Expert opinion: Synthetic feasibility and ease of derivatization at multiple positions, has allowed medicinal chemists to explore quinolones and their chemical diversity to discover newer anticancer agents. The presence of both hydrogen bond donor (?NH) and acceptor (-C=O) functionality in the basic scaffold at two different positions, has broadened the research scope. In particular, substitution at the -NH functionality of the quinolone motif has provided ample space for suitable functionalization and appropriate substitution at the quinolone�s third, sixth, and seventh carbons, resulting in selective anticancer agents binding specifically with various drug targets. � 2023 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Microsponges as Drug Delivery System: Past, Present, and Future Perspectives
    (Bentham Science Publishers, 2023-04-04T00:00:00) Biharee, Avadh; Bhartiya, Sudha; Yadav, Arpita; Thareja, Suresh; Jain, Akhlesh Kumar
    Microsponges are polymeric delivery devices composed of porous microspheres that range in size from 5 to 300 micrometers. These have been explored for biomedical applications such as targeted drug deliv-ery, transdermal drug delivery, anticancer drug delivery, and bone substitutes. The purpose of this study is to conduct a comprehensive analysis of recent developments and prospects for a microsponge-based drug delivery system. The current study analyzes how the Microsponge Delivery System (MDS) is made, how it works, and how it can be used for a wide range of therapeutic purposes. The therapeutic potential and patent information of microsponge-based formulations were systematically analyzed. The authors summarize various effective tech-niques for developing microsponges, such as liquid-liquid suspension polymerization, quasi-emulsion solvent diffusion method, water-in-oil-in-water (w/o/w) emulsion solvent diffusion, oil-in-oil emulsion solvent diffu-sion, lyophilization method, porogen addition method, vibrating orifice aerosol generator method, electro-hydrodynamic atomization method, and ultrasound-assisted microsponge. Microsponge may reduce the side effects and increase drug stability by positively altering drug release. Drugs that are both hydrophilic and hy-drophobic can be loaded into a microsponge and delivered to a specific target. The microsponge delivery technology offers numerous advantages over conventional delivery systems. Microsponges, which are spherical sponge-like nanoparticles with porous surfaces, have the potential to increase the stability of medications. They also efficiently decrease the undesirable effects and alter drug release. � 2023 Bentham Science Publishers.
  • Item
    Molecular docking, 3D-QSAR and simulation studies for identifying pharmacophoric features of indole derivatives as 17?-hydroxysteroid dehydrogenase type 5 (17?-HSD5) inhibitors
    (Taylor and Francis Ltd., 2023-02-06T00:00:00) Kulkarni, Swanand; Singh, Yogesh; Biharee, Avadh; Bhatia, Neha; Monga, Vikramdeep; Thareja, Suresh
    Excess of androgens leads to various diseases such as Poly-Cystic Ovarian Syndrome, Prostate Cancer, Hirsutism, Obesity and Acne. 17?-Hydroxysteroid Dehydrogenase type 5 (17?-HSD5) converts androstenedione into testosterone peripherally, thereby significantly contributing to the development of these diseases. Indole-bearing scaffolds are reported as potential 17?-HSD5 inhibitors for the manifestation of diseases arising due to androgen excess. In the present work, we have extensively performed a combination of molecular docking, Gaussian field-based 3D-QSAR, Pharmacophore mapping and MD-simulation studies (100 ns) to identify the pharmacophoric features of indole-based compounds as potent 17?-HSD5 inhibitors. Molecular simulation studies of the most potent compound in the binding pocket of enzyme revealed that the compound 11 was stable in the binding pocket and showed good binding affinity through interactions with various residues of active site pocket. The Molecular mechanics Generalized Born surface area continuum solvation (MM/GBSA) and Molecular mechanics Poisson�Boltzmann surface area (MM/PBSA) calculations revealed that the compound 11 possessed a free binding energy of ?36.36 kcal/mol and ?7.00 kcal/mol, respectively, which was better as compared to reference compound Desmethyl indomethacin (DES). The developed pharmacophore will be helpful to design novel indole-based molecules as potent 17?-HSD5 inhibitors for the treatment of various androgenic disorders. Communicated by Ramaswamy H. Sarma. � 2023 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Flavonoids as promising anticancer agents: an in silico investigation of ADMET, binding affinity by molecular docking and molecular dynamics simulations
    (Taylor and Francis Ltd., 2022-09-27T00:00:00) Biharee, Avadh; Yadav, Arpita; Jangid, Kailash; Singh, Yogesh; Kulkarni, Swanand; Sawant, Devesh M.; Kumar, Pradeep; Thareja, Suresh; Jain, Akhlesh Kumar
    Cancer is one of the most concerning diseases to humankind. Various treatment strategies are being employed for its treatment, out of which use of natural products is an essential one. Flavonoids have proven to be promising anticancer targets since decades. Also, tubulin is a significant biological target for the development of anticancer agents due to its crucial role in mitosis and abundance throughout the body. In the current study, in silico ADMET parameters of 104 flavonoids were examined, followed by molecular docking with the colchicine binding site of Tubulin protein (PDB; Id 4O2B). The best conformation from each flavonoid subcategory with the best docking score (MolDock score) was further subjected to 100 ns of molecular dynamics to investigate the protein-ligand complex�s stability. Different parameters such as RMSD, RMSF, rGy and SASA were calculated for the six flavonoids using molecular dynamic studies. The top most compound from all the six subcategories of flavonoids elicited best behavior in the colchicine binding site of Tubulin protein. This in silico study employing molecular docking and molecular dynamics simulation provides strong evidence for flavonoids to be excellent anti-tubulin agents for the treatment of cancer. Communicated by Ramaswamy H. Sarma. � 2022 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Recent Advancement of Polymersomes as Drug Delivery Carrier
    (Bentham Science Publishers, 2022-04-14T00:00:00) Singh, Kuldeep; Biharee, Avadh; Vyas, Amber; Thareja, Suresh; Jain, Akhlesh Kumar
    Background: Biomedical applications of polymersomes have been explored, including drug and gene delivery, insulin delivery, hemoglobin delivery, the delivery of anticancer agents, and various diagnostic purposes. Objectives: Polymersomes, which are self-assembled amphiphilic block copolymers, have received a lot of at-tention in drug delivery approaches. This review represents the methods of preparation of polymersomes, including thin-film rehydration, electroformation, double emulsion, gel-assisted rehydration, PAPYRUS method, and solvent injection methods, including various therapeutic applications of polymersomes. Methods: Data was searched from PubMed, Google Scholar, and Science Direct through searching of the following keywords: Polymersomes, methods of preparation, amphiphilic block copolymers, anticancer drug delivery Results: Polymersomes provide both hydrophilic and hydrophobic drug delivery to a targeted site, increasing the formulation's stability and reducing the cytotoxic side effects of drugs. Conclusion: Polymersomes have the potential to be used in a variety of biological applications, including drug and gene delivery, insulin delivery, hemoglobin delivery, delivery of anticancer agents, as well as in various diagnostic purposes. Recently, polymersomes have been used more frequently because of their stability, reducing the encapsulated drug's leakage, site-specific drug delivery, and increasing the bioavailability of the drugs and different diagnostic purposes. The liposomes encapsulate only hydrophilic drugs, but polymersomes encapsulate both hydrophilic and hydrophobic drugs in their cores. � 2022 Bentham Science Publishers.
  • Item
    Updated ethnobotanical notes, phytochemistry and phytopharmacology of plants belonging to the genus Morus (Family: Moraceae)
    (Elsevier B.V., 2021-09-17T00:00:00) Yadav, Sonam; Nair, Nisha; Biharee, Avadh; Prathap, Vivek Morris; Majeed, Jaseela
    Background: : Mulberry (Genus: Morus, Family: Moraceae) is a flowering plant utilized in Traditional Chinese Medicine (TCM) and Ayurveda for its ethnobotanical uses in fever, liver protection, diuretics, management of appropriate blood pressure, improving eyesight, and management of cardiovascular disease. Being a plant of multiple ethnobotanical prospects, it is used to prevent kidney diseases, hair problems, weakness, fatigue, constipation, blood disorders, anemia, and premature greying of hair, among few other ailments. This review aims to systematically organize information on the ethnobotanical uses, phytochemical constituents, phytopharmacological actions, and toxicity of the Morus genus as the information shall serve towards future research in drug discovery and help in unearthing molecular basis of pharmacological activity of Mulberry. Method: : Many relevant information sources, such as Elsevier, Science Direct, PubMed, ACS Publications, SciFinder, Wiley, and Google Scholar, Chinese Pharmacopoeia 2015, Chinese and Indian herbal classic texts, and Ph.D. dissertation, were used to gather relevant publications till February 2021 on the Morus genus. Results: : Many phytochemicals that are isolated from Morus genus such as Mulberrin, Morin, Deoxynojirimycin (DNJ), Epicatechin, Gallic acid, Vanillic acid, Oxyresveratrol, Quercetin, Flavone A, B and C, are proven to be pharmacologically important and have comprehensive biological actions such as anti-inflammatory, anticancer, antibacterial, anti-obesity, antidopaminergic, antioxidant activity, as well as skin whitening properties making the plants of Morus genus therapeutically important. Conclusions: : Plants of Morus genus are valuable and are popular in ancient herbal medicine with the extensive pharmacological potential to cure various ailments. While phytochemicals from plants of Morus genus have already been extensively analysed, there may still be unknown compounds that play a role in the plant's biological function which needs to be elucidated. There are significant gaps in our understanding of biological processes involved in activities of these phytochemicals that need more investigation. � 2021 The Author(s)
  • Item
    Recent development in indole derivatives as anticancer agent: A mechanistic approach
    (Bentham Science Publishers, 2021-01-05T00:00:00) Devi, Neha; Kaur, Kamalpreet; Biharee, Avadh; Jaitak, Vikas
    Background: Cancer accounts for several deaths each year. There are multiple FDA approved drugs for cancer treatments. Due to the severe side effects and multiple drug resistance, the current drug therapies become ineffective. So, the newer moieties with fewer toxic effects are necessary for the development. Objective: The mechanism of indole derivatives as anti-cancer agents with their major target is explored in detail in this article. Methods: Recent advances and mechanism of indole derivatives as anti-cancer agents are reviewed. This review suggests a detailed explanation of multiple mechanisms of action of various indole derivatives: cell cycle arrest, aromatase inhibitor estrogen receptor regulator, tubulin inhibitor, a tyrosine kinase inhibitor, topoisomerase inhibitors, and NFkB/PI3/Akt/mTOR pathway inhibitors, through which these derivatives have shown promising anti-cancer potential. Results: A full literature review showed that the indole derivatives are associated with the properties of inducing apoptosis, aromatase inhibition, regulation of estrogen receptor and inhibition of tyrosine kinase, tubulin assembly, NFkB/PI3/Akt/mTOR pathway, and HDACs. These derivatives have shown significant activity against cancer cell lines. Conclusion: Indole derivatives seem to be important in cancer via acting through various mechanisms. This review has shown that the indole derivatives can further be explored for the betterment of cancer treatment, and to discover the hidden potential of indole derivatives. � 2021 Bentham Science Publishers.