Department Of Pharmaceutical Sciences and Natural Products

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52

Browse

Search Results

Now showing 1 - 10 of 10
  • Item
    Oxazoline/amide derivatives against M. tuberculosis: experimental, biological and computational investigations
    (Taylor and Francis Ltd., 2023-11-10T00:00:00) Bajpai, Priyanka; Singh, Ankit Kumar; Kandagalla, Shivanada; Chandra, Phool; Kumar Sah, Vimlendu; Kumar, Pradeep; Grishina, Maria; Verma, Om Prakash; Pathak, Prateek
    Tuberculosis (TB) is a treatable contagious disease that continuously kills approximately 2 million people yearly. Different oxazoline/amide derivatives were synthesized, and their anti-tuberculosis activity was performed against different strains of Mtb. This study designed the anti-Mtb compounds based on amide and oxazoline, two different structural moieties. The compounds were further synthesized and characterized by spectral techniques. Their anti-Tb activity was evaluated against strain (M. tuberculosis: H37Rv). Selectivity and binding affinity of all synthesized compounds (2a�2e, 3a�3e) against PanK in Mtb were investigated through molecular docking. Molecular dynamics simulation studies for the promising compounds 2d and 3e were performed for 100 ns. The stability of these complexes was assessed by calculating the root mean square deviation, solvent-accessible surface area, and gyration radius relative to their parent structures. Additionally, free energy of binding calculations were performed. Among all synthesized compounds, 2d and 3e had comparable antitubercular activity against standard drug, validated by their computational and biological study. � 2023 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Design, one-pot synthesis, computational and biological evaluation of diaryl benzimidazole derivatives as MEK inhibitors
    (Taylor and Francis Ltd., 2023-10-09T00:00:00) Ram, Teja; Singh, Ankit Kumar; Pathak, Prateek; Kumar, Adarsh; Singh, Harshwardhan; Grishina, Maria; Novak, Jurica; Kumar, Pradeep
    MEK mutations are more common in various human malignancies, such as pancreatic cancer (70�90%), mock melanoma (50%), liver cancer (20�40%), colorectal cancer (25�35%), melanoma (15�20%), non-small cell lung cancer (10�20%) and basal breast cancer (1�5%). Considering the significance of MEK mutations in diverse cancer types, the rational design of the proposed compounds relies on the structural resemblance to FDA-approved MEK inhibitors like selumetinib and binimetinib. The compound under design features distinct substitutions at the benzimidazole moiety, specifically at positions 2 and 3, akin to the FDA-approved drugs, albeit differing in positions 5 and 6. Subsequent structural refinement was guided by key elements including the DFG motif, hydrophobic pocket and catalytic loop of the MEK protein. A set of 15 diverse diaryl benzimidazole derivatives (S1�S15) were synthesized via a one-pot approach and characterized through spectroscopic techniques, including MASS, IR, 1H NMR and 13C NMR. In vitro anticancer activities of all the synthesized compounds were evaluated against four cancer cell lines, A375, HT ?29, A431 and HFF, along with the standard drug trametinib. Molecular docking was performed for all synthesized compounds (S1�15), followed by 950 ns molecular dynamics simulation studies for the promising compounds S1, S5 and S15. The stability of these complexes was assessed by calculating the root-mean-square deviation, solvent accessible surface area and gyration radius relative to their parent structures. Additionally, free energy of binding calculations were performed. Based on the biological and computational results, S15 was the most potent compound and S1 and S5 are comparable to the standard drug trametinib. Communicated by Ramaswamy H. Sarma. � 2023 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives
    (Royal Society of Chemistry, 2023-08-10T00:00:00) Ram, Teja; Singh, Ankit Kumar; Kumar, Adarsh; Singh, Harshwardhan; Pathak, Prateek; Grishina, Maria; Khalilullah, Habibullah; Jaremko, Mariusz; Emwas, Abdul-Hamid; Verma, Amita; Kumar, Pradeep
    MEK1/2 are critical components of the RAS-RAF-MEK-ERK or MAPK signalling pathway that regulates a variety of cellular functions including proliferation, survival, and differentiation. In 1997, a lung cancer cell line was first found to have a MEK mutation (encoding MEK2P298L). MEK is involved in various human cancers such as non-small cell lung cancer (NSCLC), spurious melanoma, and pancreatic, colorectal, basal, breast, and liver cancer. To date, 4 MEK inhibitors i.e., trametinib, cobimetinib, selumetinib, and binimetinib have been approved by the FDA and several are under clinical trials. In this review, we have highlighted structural insights into the MEK1/2 proteins, such as the ?C-helix, catalytic loop, P-loop, F-helix, hydrophobic pocket, and DFG motif. We have also discussed current issues with all FDA-approved MEK inhibitors or drugs under clinical trials and combination therapies to improve the efficacy of clinical drugs. Finally, this study addressed recent developments on synthetic MEK inhibitors (from their discovery in 1997 to 2022), their unique properties, and their relevance to MEK mutant inhibition. � The Royal Society of Chemistry 2023.
  • Item
    Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022
    (American Chemical Society, 2023-07-26T00:00:00) Singh, Ankit Kumar; Sonawane, Pankaj; Kumar, Adarsh; Singh, Harshwardhan; Naumovich, Vladislav; Pathak, Prateek; Grishina, Maria; Khalilullah, Habibullah; Jaremko, Mariusz; Emwas, Abdul-Hamid; Verma, Amita; Kumar, Pradeep
    Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and ?C-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants. � 2023 The Authors. Published by American Chemical Society.
  • Item
    Virtual screening, structure based pharmacophore mapping, and molecular simulation studies of pyrido[2,3-d]pyrimidines as selective thymidylate synthase inhibitors
    (Taylor and Francis Ltd., 2023-05-08T00:00:00) Kumar, Adarsh; Novak, Jurica; Singh, Ankit Kumar; Singh, Harshwardhan; Thareja, Suresh; Pathak, Prateek; Grishina, Maria; Verma, Amita; Kumar, Pradeep
    Human thymidylate synthase is the rate-limiting enzyme in the de novo synthesis of 2'-deoxythymidine-5'-monophosphate. dUMP (pyrimidine) and folate binding site hTS inhibitors showed resistance in colorectal cancer (CRC). In the present study, we have performed virtual screening of the pyrido[2,3-d]pyrimidine database, followed by binding free energy calculations, and pharmacophore mapping to design novel pyrido[2,3-d]pyrimidine derivatives to stabilize inactive confirmation of hTS. A library of 42 molecules was designed. Based on the molecular docking studies, four ligands (T36, T39, T40, and T13) were identified to have better interactions and docking scores with the catalytic sites [dUMP (pyrimidine) and folate binding sites] of hTS protein than standard drug, raltitrexed. To validate efficacy of the designed molecules, we performed molecular dynamics simulation studies at 1000 ns with principal component analysis and binding free energy calculations on the hTS protein, also drug likeness properties of all hits were in acceptable range. Compounds T36, T39, T40, and T13 interacted with the catalytic amino acid (Cys195), an essential amino acid for anticancer activity. The designed molecules stabilized the inactive conformation of hTS, resulting in the inhibition of hTS. The designed compounds will undergo synthesis and biological evaluation, which may yield selective, less toxic, and highly potent hTS inhibitors. Communicated by Ramaswamy H. Sarma. � 2023 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Metal Complexes in Cancer Treatment: Journey So Far
    (John Wiley and Sons Inc, 2023-02-24T00:00:00) Kumar Singh, Ankit; Kumar, Adarsh; Singh, Harshwardhan; Sonawane, Pankaj; Pathak, Prateek; Grishina, Maria; Pal Yadav, Jagat; Verma, Amita; Kumar, Pradeep
    Metal complexes in cancer therapy have attracted much interest mainly because metals exhibit unique characteristics, such as redox activity, metal-ligand interaction, structure and bonding, Lewis acid properties etc. In 1965, Barnett Rosenberg serendipitously discovered the metal-based compound cisplatin, an outstanding breakthrough in the history of metal-based anticancer complexes and led to a new area of anticancer drug discovery. Many metal-based compounds have been studied for their potential anticancer properties. Some of these compounds have FDA approval for clinical use, while others are now undergoing clinical trials for cancer therapy and detection. In the present study, we have highlighted the primary mode of action of metallic complexes and all FDA-approved/under clinical trial drugs with reference to cancer treatment. This review also focuses on recent progress on metal-based complexes such as platinum, ruthenium, iron, etc. with potential anticancer activities. � 2023 Wiley-VHCA AG, Zurich, Switzerland.
  • Item
    Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective
    (MDPI, 2023-02-15T00:00:00) Kumar, Adarsh; Singh, Ankit Kumar; Singh, Harshwardhan; Vijayan, Veena; Kumar, Deepak; Naik, Jashwanth; Thareja, Suresh; Yadav, Jagat Pal; Pathak, Prateek; Grishina, Maria; Verma, Amita; Khalilullah, Habibullah; Jaremko, Mariusz; Emwas, Abdul-Hamid; Kumar, Pradeep
    Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, ?-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets. � 2023 by the authors.
  • Item
    Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine-sulfonamide hybrids as selective BRAFV600E inhibitors
    (Royal Society of Chemistry, 2022-10-21T00:00:00) Singh, Ankit Kumar; Novak, Jurica; Kumar, Adarsh; Singh, Harshwardhan; Thareja, Suresh; Pathak, Prateek; Grishina, Maria; Verma, Amita; Yadav, Jagat Pal; Khalilullah, Habibullah; Pathania, Vikas; Nandanwar, Hemraj; Jaremko, Mariusz; Emwas, Abdul-Hamid; Kumar, Pradeep
    The �RAS-RAF-MEK-ERK� pathway is an important signaling pathway in melanoma. BRAFV600E (70-90%) is the most common mutation in this pathway. BRAF inhibitors have four types of conformers: type I (?C-IN/DFG-IN), type II (?C-IN/DFG-OUT), type I1/2 (?C-OUT/DFG-IN), and type I/II (?C-OUT/DFG-OUT). First- and second-generation BRAF inhibitors show resistance to BRAFV600E and are ineffective against malignancies induced by dimer BRAF mutants causing �paradoxical� activation. In the present study, we performed molecular modeling of pyrimidine-sulfonamide hybrids inhibitors using 3D-QSAR, molecular docking, and molecular dynamics simulations. Previous reports reveal the importance of pyrimidine and sulfonamide moieties in the development of BRAFV600E inhibitors. Analysis of 3D-QSAR models provided novel pyrimidine sulfonamide hybrid BRAFV600E inhibitors. The designed compounds share similarities with several structural moieties present in first- and second-generation BRAF inhibitors. A total library of 88 designed compounds was generated and molecular docking studies were performed with them. Four molecules (T109, T183, T160, and T126) were identified as hits and selected for detailed studies. Molecular dynamics simulations were performed at 900 ns and binding was calculated. Based on molecular docking and simulation studies, it was found that the designed compounds have better interactions with the core active site [the nucleotide (ADP or ATP) binding site, DFG motif, and the phospho-acceptor site (activation segment) of BRAFV600E protein than previous inhibitors. Similar to the FDA-approved BRAFV600E inhibitors the developed compounds have [?C-OUT/DFG-IN] conformation. Compounds T126, T160 and T183 interacted with DIF (Leu505), making them potentially useful against BRAFV600E resistance and malignancies induced by dimer BRAF mutants. The synthesis and biological evaluation of the designed molecules is in progress, which may lead to some potent BRAFV600E selective inhibitors. � 2022 The Royal Society of Chemistry.
  • Item
    Cucumis melo Var. agrestis Naudin as a potent antidiabetic: Investigation via experimental methods
    (Elsevier B.V., 2022-09-06T00:00:00) Yadav, Jagat Pal; Singh, Ankit Kumar; Grishina, Maria; Pathak, Prateek; Patel, Dinesh Kumar
    Background: The present study reveals that the ethanolic extract of Cucumis melo var. agrestis (CMVA), can influence the activity of blood glucose level, insulin level, oxidative stress, and lipid profile in Alloxan monohydrate induced diabetic rats. Methods: Wistar albino rats were randomly divided into five groups (n=6), viz. Normal control (non-diabetic), diabetic control (alloxan induced), diabetic treated group (infused with doses 250 and 500 mg/kg b.w) of CMVA ethanolic extract, and standard treated diabetes (infused with pioglitazone 1 mg/kg b.w). Diabetes was induced by administration of alloxan monohydrate (150 mg/kg i.p). The ethanolic extract of CMVA was supplemented orally in different doses for 45 days. Biochemical investigations as well as histopathological examination were carried out accordingly. Results: The diabetic rats supplemented with CMVA significantly decreased blood glucose levels in a dose dependent manner (#p < 0.001). The plasma insulin level was found significantly increased in rats treated with CMVA. However, in CMVA treated group, the oxidative stress parameters (such as SOD, CAT, GSHpx and GSH) and lipid parameters were restored up to normal level (#p < 0.001). Histopathological studies showed that the microscopic architecture of pancreatic cells were improved in CMVA treated groups. Conclusion: The research illustrated that CMVA has potent antidiabetic as well as antioxidant activity along with hypolipidemic effect. Therefore, active phyto-compounds of the selected plants can be isolated and further formulation can be develop in near future. � 2022
  • Item
    Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids
    (MDPI, 2022-08-30T00:00:00) Singh, Ankit Kumar; Kumar, Adarsh; Singh, Harshwardhan; Sonawane, Pankaj; Paliwal, Harshali; Thareja, Suresh; Pathak, Prateek; Grishina, Maria; Jaremko, Mariusz; Emwas, Abdul-Hamid; Yadav, Jagat Pal; Verma, Amita; Khalilullah, Habibullah; Kumar, Pradeep
    Cancer is a complex disease, and its treatment is a big challenge, with variable efficacy of conventional anticancer drugs. A two-drug cocktail hybrid approach is a potential strategy in recent drug discovery that involves the combination of two drug pharmacophores into a single molecule. The hybrid molecule acts through distinct modes of action on several targets at a given time with more efficacy and less susceptibility to resistance. Thus, there is a huge scope for using hybrid compounds to tackle the present difficulties in cancer medicine. Recent work has applied this technique to uncover some interesting molecules with substantial anticancer properties. In this study, we report data on numerous promising hybrid anti-proliferative/anti-tumor agents developed over the previous 10 years (2011�2021). It includes quinazoline, indole, carbazole, pyrimidine, quinoline, quinone, imidazole, selenium, platinum, hydroxamic acid, ferrocene, curcumin, triazole, benzimidazole, isatin, pyrrolo benzodiazepine (PBD), chalcone, coumarin, nitrogen mustard, pyrazole, and pyridine-based anticancer hybrids produced via molecular hybridization techniques. Overall, this review offers a clear indication of the potential benefits of merging pharmacophoric subunits from multiple different known chemical prototypes to produce more potent and precise hybrid compounds. This provides valuable knowledge for researchers working on complex diseases such as cancer. � 2022 by the authors.