Department Of Pharmaceutical Sciences and Natural Products

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Research progress on 2,4-thiazolidinedione and 2-thioxo-4-thiazolidinone analogues as aldose reductase inhibitors
    (Elsevier B.V., 2022-07-18T00:00:00) Kharyal, Ankush; Ranjan, Sanjeev; Jaswal, Shalini; Parveen, Darakhshan; Gupta, Ghanshyam Das; Thareja, Suresh; Verma, Sant Kumar
    Diabetes-associated complications are a major global health concern. In diabetics, the increased accumulation of sorbitol, produced via over activated polyol pathway, from glucose by the action of aldose reductase (AR, ALR2, or AKR1B1), has been associated with life-threatening co-morbidities. Aldose reductase is crucial in detoxifying certain hazardous aldehydes. However, aldose reductase overexpression in the hyperglycemic state results in microvascular and macrovascular diabetic complications through the consequences of the activated polyol pathway. Accordingly, aldose reductase inhibition has been identified as a viable strategy for dealing with diabetes-associated complications, and it has been put under investigation by various researchers around the world. 2,4-Thiazolidinedione (TZD) and its bio-isosteric analog 2-thioxo-4-thiazolidinone (rhodanine) have been explored as potential inhibitors of aldose reductase to find new molecules. The current review provides a comprehensive insight into the development and medicinal chemistry of TZD and rhodanine derivatives as aldose reductase inhibitors during the last twenty years (2002�2021). Here, the synthetic strategies, SAR, and binding mode of various compounds, Quantitative structure activity relationship (QSARs) are discussed with an emphasis on structural changes to the both moieties for optimizing/designing potent target-specific inhibitors, which is expected to be beneficial for the further design and discovery of newer agents for the treatment of diabetic complications. In addition, the patents on TZDs and rhodanine derivatives as aldose reductase inhibitors are summarized to illustrate the current status. � 2022 Elsevier B.V.
  • Item
    De novo designing, assessment of target affinity and binding interactions against aromatase: Discovery of novel leads as anti-breast cancer agents
    (Springer, 2020-11-13T00:00:00) Verma, Sant Kumar; Ratre, Pooja; Jain, Akhlesh Kumar; Liang, Chengyuan; Gupta, Ghanshyam Das; Thareja, Suresh
    Aromatase inhibitors (AIs) have been emerged as promising anti-cancer agents for the treatment of hormone dependent breast cancer (HDBC) in women because of their excellent ability of inhibiting oestrogen synthesis. Here, we have implicated structure-based comprehensive approaches to discover novel drug/lead-like AIs. The molecular modelling and energy optimization were performed using Chem Office package. The e-LEA3D web server was used to design novel drug/lead-like AIs as well as generation of ADME/drug-likeness parameters. Target binding affinities and mode of binding interactions were mapped using Molegro Virtual Docker (MVD) to re-optimize the best de novo generated molecules. We have successfully designed novel AIs (compounds 1�7) using de novo technique performed on e-LEA3D. All the designed molecules were found optimum drug-like candidates based on various in silico screening parameters including �rule of five�. The energy optimized conformers of generated molecules (1�7) were docked in the active site, corresponding to co-crystallized androstenedione (ASD), of aromatase to predict ligand-target binding affinity and their binding interactions. The molecules (1�7) showed comparable to higher binding affinity towards aromatase with MolDock Score ranges from ? 134.881 to ? 152.453�Kcal/mol as compared with natural substrate ASD (? 128.639�Kcal/mol) and standard letrozole (? 136.784�Kcal/mol). The de novo designed molecules (1�7) can be developed as novel AIs, and their binding properties can be used for the further designing of newer AIs by medicinal chemists. � 2020, Springer Science+Business Media, LLC, part of Springer Nature.