Department Of Pharmaceutical Sciences and Natural Products
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52
Browse
2 results
Search Results
Item Design Strategies, Chemistry and Therapeutic Insights of Multi-target Directed Ligands as Antidepressant Agents(Bentham Science Publishers, 2021-11-03T00:00:00) Singh, Karanvir; Bhatia, Rohit; Kumar, Bhupinder; Singh, Gurpreet; Monga, VikramdeepDepression is one of the major disorders of the central nervous system worldwide and causes disability and functional impairment. According to the World Health Organization, around 265 million people worldwide are affected by depression. Currently marketed antidepressant drugs take weeks or even months to show anticipated clinical efficacy but remain ineffective in treating suicidal thoughts and cognitive impairment. Due to the multifactorial complexity of the disease, single-target drugs do not always produce satisfactory results and lack the desired level of therapeutic efficacy. Recent literature reports have revealed improved therapeutic potential of multi-target directed ligands due to their synergistic potency and better safety. Medicinal chemists have gone to great extents to design multitarget ligands by generating structural hybrids of different key pharmacophores with improved binding affinities and potency towards different receptors or enzymes. This article has compiled the design strategies of recently published multi-target directed ligands as antidepressant agents. Their biological evaluation, structural-activity relationships, mechanistic and in silico studies have also been described. This article will prove to be highly useful for the researchers to design and develop multi-target ligands as antidepressants with high potency and therapeutic efficacy. � 2022 Bentham Science Publishers.Item Role of peroxisome proliferator-activated receptor gamma (Ppar?) in different disease states: Recent updates(Bentham Science Publishers, 2020-07-17T00:00:00) Mal, Suvadeep; Dwivedi, Ashish Ranjan; Kumar, Vijay; Kumar, Naveen; Kumar, Bhupinder; Kumar, VinodPeroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPAR?), PPAR beta (PPAR?), and PPAR gamma (PPAR?). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPAR? causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPAR? is mainly involved in fatty acid storage, glucose metabolism, and homeo-stasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPAR? and modulate its activity. Ligands such as thiazolidinedione troglitazone, rosiglita-zone, pioglitazone effectively bind to PPAR?; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPAR? in various disease states. In addition, recently reported PPAR? ligands and pan PPAR ligands were dis-cussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects. � 2021 Bentham Science Publishers.