Department Of Pharmaceutical Sciences and Natural Products

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Pore-forming proteins and their role in cancer and inflammation: Mechanistic insights and plausible druggable targets
    (Elsevier Ireland Ltd, 2022-08-30T00:00:00) Sankar, Jishnu; Arora, Sahil; Joshi, Gaurav; Kumar, Raj
    Perforin is a granular effector pore-forming protein formed in NK cells and Cytotoxic T lymphocytes. These cytotoxic proteins are part of the first-line immune defense in the human body. They ensure apoptosis of pathogen-infected cells or tumor cells in the human body. Activation of receptors on NK cell or T cell triggers secondary proteins in these cells. Further, it leads to Ca2+ dependent perforin egress towards the target cell, ensued by PI3K signaling pathway. Perforin undergoes oligomerization over the target cell membrane and forms transmembrane pores with the membrane-spanning domain-MACPF domain. Granzymes, proapoptotic serine proteases are released through these pores and initiate the target cell apoptotic pathway leading to the cell death. Although perforin is a savior for humans from tumor and viral infections, uncontrolled expression of the perforins leads to the autoimmune conditions, including Familial Hemophagocytic lymphohistiocytosis, insulin-dependent diabetes, and cerebral myocarditis. The present review is the concerted effort to highlight the mechanistic pathways concerning perforin secretion, NK cell and T cell-mediated cytotoxicity towards virus-infected and transformed cells. This is followed by the discussion on synthetic derivatives tested so far to inhibit the perforin in pre and clinical arena for certain unusual conditions. � 2022 Elsevier B.V.
  • Item
    Rationalization of the activity Profile of Pyruvate Kinase Isozyme M2 (PKM2) Inhibitors using 3D QSAR
    (Bentham Science Publishers, 2021-08-05T00:00:00) Kusuma, Merugumala; Arora, Sahil; Kalra, Sourav; Chaturvedi, Anuhar; Heuser, Michael; Kumar, Raj
    Introduction: Pyruvate kinase isozyme M2 (PKM2) was observed to be overexpressed and play a key role in cell growth and cancer cells' metabolism. During the past years, phytochemicals have been developed as new treatment options for chemoprevention and cancer therapy. Natural re-sources, like shikonin (naphthoquinone) and its derivatives, have emerged to be high potential therapeutics in cancer treatment. Methods: Our study aimed to design novel anti-tumour agents (PKM2 inhibitors) focusing on the shikonin scaffold with a better activity using computational methods. We applied a three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using Field-based QSAR. Results: The Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were performed on a series of forty shikonin derivatives, including shikonin, to develop robust models and rationalize the PKM2 inhibitory activity profile by building a correlation between structural features and activity. Conclusion: These predictive computational models will further help the design and synthesis of potent PKM2 inhibitors and their fast biological assessment at a low cost. � 2021 Bentham Science Publishers.
  • Item
    Synthesis of 1,4-dihydropyrazolo[4,3-b]indoles via intramolecular C(sp2)-N bond formation involving nitrene insertion, DFT study and their anticancer assessment
    (Academic Press Inc., 2021-06-29T00:00:00) Kaur, Manpreet; Mehta, Vikrant; Abdullah Wani, Aabid; Arora, Sahil; Bharatam, Prasad V.; Sharon, Ashoke; Singh, Sandeep; Kumar, Raj
    We herein report a new synthetic route for a series of unreported 1,4-dihydropyrazolo[4,3-b]indoles (6�8) via deoxygenation of o-nitrophenyl-substituted N-aryl pyrazoles and subsequent intramolecular (sp2)-N bond formation under microwave irradiation expedite modified Cadogan condition. This method allows access to NH-free as well as N-substituted fused indoles. DFT study and controlled experiments highlighted the role of nitrene insertion as one of the plausible reaction mechanisms. Furthermore, the target compounds exhibited cytotoxicity at low micromolar concentration against lung (A549), colon (HCT-116), and breast (MDA-MB-231, and MCF-7) cancer cell lines, induced the ROS generation and altered the mitochondrial membrane potential of highly aggressive MDA-MB-231 cells. Further investigations revealed that these compounds were selective Topo I (6h) or Topo II (7a, 7b) inhibitors. � 2021 Elsevier Inc.
  • Thumbnail Image
    Item
    Recent Advancements in Small Molecule Inhibitors of Insulin–like Growth Factor-1 Receptor (IGF-1R) Tyrosine Kinase as Anticancer agents
    (Bentham Science, 2013) Negi, Arvind; Ramarao, P.; Kumar, Raj
    Advancements in understanding of the genetics, genomics, biochemistry and the pharmacology of cancer in human, have driven the current cancer chemotherapy to intently focus on development of target-based approaches rather than conventional approaches. From among the various targets identified, validated and inhibited at different hallmarks of cancer, protein tyrosine kinases (PTKs) have been exploited the most. Insulin receptors (IRs), insulin like growth factor receptors (IGF-1R) and their hybrid receptors belong to tyrosine kinase receptor (TKR) family, constitute a structural homology among them and generate a growth promoting IGF system on binding with either insulin, IGF-1 or IGF-2. The system induces the mitogenic effects through a torrent of cell signals produced as a result of cross talk with other growth promoting peptides and steroidal hormones, ultimately resulting in hijacking apoptosis and increasing cell proliferation and cell survival in cancer cells. Various strategies such as anti-IGF-1R antibodies, IGF-1 mimetic peptides, antisense strategies, IGF-1R specific peptide aptamers, targeted degradation of IGF-1R and expression of dominant negative IGF- 1R mutants have been explored to inhibit the IGF-1R signaling. However, targeting IGF-1R with small molecules has gained considerable attention in last few years due to their ease of synthesis, ease of optimization of absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters, oral route of administration, lesser side effects and cost effectiveness. The present review provides a broad overview and discusses the highlights on discoveries, SAR studies and binding interactions of small molecules with either IGF-1R active or allosteric sites reported till date.