Department Of Pharmaceutical Sciences and Natural Products
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52
Browse
2 results
Search Results
Item Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes(2012) Malhi, Sarandeep Singh; Budhiraja, Abhishek; Arora, Sumit; Chaudhari, Kiran R.; Nepali, Kunal; Kumar, Raj; Sohi, Harmik; Murthy, Rayasa S.R.Cancer cells reflect higher level of ROS in comparison to the normal cell, so they become more vulnerable to further oxidative stress induced by exogenous ROS-generating agents. Through this a novel therapeutic strategy has evolved, which involves the delivery of redox cycler-doxorubicin (DOX) to the mitochondria of cancer cell where it acts as a source of exogenous ROS production. The purpose of this study is to develop a liposomal preparation which exhibits a propensity to selectively target cancer cell along with the potential of delivering drug to mitochondria of cell. We have rendered liposomes mitocancerotropic (FA-MTLs) by their surface modification with dual ligands, folic acid (FA) for cancer cell targeting and triphenylphosphonium (TPP) cations for mitochondria targeting. The cytotoxicity, ROS production and cell uptake of doxorubicin loaded liposomes were evaluated in FR (+) KB cells and found to be increased considerably with FA-MTLs in comparison to folic acid appended, mitochondria targeted and non-targeted liposomes. As confirmed by confocal microscopy, the STPP appended liposomes delivered DOX to mitochondria of cancer cell and also showed higher ROS production and cytotoxicity in comparison to folic acid appended and non-targeted liposomes. Most importantly, mitocancerotropic liposomes showed superior activity over mitochondria targeted liposomes which confirm the synergistic effect imparted by the presence of dual ligands - folic acid and TPP on the enhancement of cellular and mitochondrial delivery of doxorubicin in KB cells. ? 2012 Elsevier B.V. All rights reserved.Item Pyrazoloquinazolines: Synthetic strategies and bioactivities(2015) Garg, Mansi; Chauhan, Monika; Singh, Pankaj Kumar; Singh, Pankaj Kumar; Alex, Jimi Marin; Kumar, RajNumerous N-heterocycles are indisputably evidenced to exhibit myriad biological activities. In the recent past, attempts made to condense the various heterocycles have resulted in derivatives possessing better bioactivities. Among many such condensed heterocycles, pyrazoloquinazolines have managed to hold the attention of many researchers, owing to the broad spectrum of activities they portray. This review is the first of its kind to congregate the various pyrazoloquinazolines reported until now and categorizes these structurally isomeric classes into eleven different groups based on the fusion pattern of the ring such as [1,5-c], [5,1-b], [4,3-h], etc. Furthermore, this review is a concerted effort to highlight design, synthetic strategies as well as biological activities of each class of this condensed heterocycle. Structure-activity relationship studies and in silico approaches wherever reported have also been discussed. In addition, manuscript also offers scope for design, synthesis and generation of libraries of unreported classes of pyrazoloquinazolines for the biological evaluation. Copyright ? 2014 Elsevier Masson SAS. All rights reserved.