Department Of Pharmaceutical Sciences and Natural Products

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Genome-wide association study of 25(OH) Vitamin D concentrations in Punjabi Sikhs: Results of the Asian Indian diabetic heart study
    (Elsevier Ltd, 2016) Sapkota, B.R.; Hopkins, R.; Bjonnes, A.; Ralhan, S.; Wander, G.S.; Mehra, N.K.; Singh, J.R.; Blackett, P.R.; Saxena, R.; Sanghera, D.K.
    Vitamin D deficiency is implicated in multiple disease conditions and accumulating evidence supports that the variation in serum vitamin D (25(OH)D) levels, including deficiency, is under strong genetic control. However, the underlying genetic mechanism associated with vitamin 25(OH)D concentrations is poorly understood. We earlier reported a very high prevalence of vitamin D deficiency associated with an increased risk for type 2 diabetes and obesity in a Punjabi Sikh diabetic cohort as part of the Asian Indian diabetic heart study (AIDHS). Here we have performed the first genome-wide association study (GWAS) of serum 25(OH)D on 3538 individuals from this Punjabi Sikh population. Our discovery GWAS comprised of 1387 subjects followed by validation of 24 putative SNPs (P < 10-4) using an independent replication sample (n = 2151) from the same population by direct genotyping. A novel locus at chromosome 20p11.21 represented by rs2207173 with minor allele frequency (MAF) 0.29, [? = -0.13, p = 4.47 ? 10-9] between FOXA2 and SSTR4 was identified to be associated with 25(OH)D levels. Another suggestive association signal at rs11586313 (MAF 0.54) [? = 0.90; p = 1.36 ? 10-6] was found within the regulatory region of the IVL gene on chromosome 1q21.3. Additionally, our study replicated 3 of 5 known GWAS genes associated with 25(OH)D concentrations including GC (p = 0.007) and CYP2R1 (p = 0.019) reported in Europeans and the DAB1 (p = 0.003), reported in Hispanics. Identification of novel association signals in biologically plausible regions with 25(OH)D metabolism will provide new molecular insights on genetic drivers of vitamin D status and its implications in health disparities. ? 2015 Elsevier Ltd. All rights reserved.
  • Thumbnail Image
    Item
    Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes
    (2012) Malhi, Sarandeep Singh; Budhiraja, Abhishek; Arora, Sumit; Chaudhari, Kiran R.; Nepali, Kunal; Kumar, Raj; Sohi, Harmik; Murthy, Rayasa S.R.
    Cancer cells reflect higher level of ROS in comparison to the normal cell, so they become more vulnerable to further oxidative stress induced by exogenous ROS-generating agents. Through this a novel therapeutic strategy has evolved, which involves the delivery of redox cycler-doxorubicin (DOX) to the mitochondria of cancer cell where it acts as a source of exogenous ROS production. The purpose of this study is to develop a liposomal preparation which exhibits a propensity to selectively target cancer cell along with the potential of delivering drug to mitochondria of cell. We have rendered liposomes mitocancerotropic (FA-MTLs) by their surface modification with dual ligands, folic acid (FA) for cancer cell targeting and triphenylphosphonium (TPP) cations for mitochondria targeting. The cytotoxicity, ROS production and cell uptake of doxorubicin loaded liposomes were evaluated in FR (+) KB cells and found to be increased considerably with FA-MTLs in comparison to folic acid appended, mitochondria targeted and non-targeted liposomes. As confirmed by confocal microscopy, the STPP appended liposomes delivered DOX to mitochondria of cancer cell and also showed higher ROS production and cytotoxicity in comparison to folic acid appended and non-targeted liposomes. Most importantly, mitocancerotropic liposomes showed superior activity over mitochondria targeted liposomes which confirm the synergistic effect imparted by the presence of dual ligands - folic acid and TPP on the enhancement of cellular and mitochondrial delivery of doxorubicin in KB cells. ? 2012 Elsevier B.V. All rights reserved.