Department Of Pharmaceutical Sciences and Natural Products

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Impact of cannabinoid receptors in the design of therapeutic agents against human ailments
    (Bentham Science Publishers, 2023-05-03T00:00:00) Kumar, Ankush; Gupta, Ojasvi; Bhatia, Rohit; Monga, Vikramdeep
    The Cannabinoid (CB) signalling cascade is widely located in the human body and is associated with several pathophysiological processes. The endocannabinoid system comprises cannabinoid receptors CB1 and CB2, which belong to G-protein Coupled Receptors (GPCRs). CB1 receptors are primarily located on nerve terminals, prohibiting neurotransmitter release, whereas CB2 are present predominantly on immune cells, causing cytokine release. The activation of CB system contributes to the development of several diseases which might have lethal consequences, such as CNS disorders, cancer, obesity, and psychotic disorders on human health. Clinical evidence revealed that CB1 receptors are associated with CNS ailments such as Alzheimer�s disease, Huntington�s disease, and multiple sclerosis, whereas CB2 receptors are primarily connected with immune disorders, pain, inflammation, etc. Therefore, cannabinoid receptors have been proved to be promising targets in therapeutics and drug discovery. Experimental and clinical outcomes have disclosed the success story of CB antagonists, and several research groups have framed newer compounds with the binding potential to these receptors. In the presented review, we have summarized variously reported heterocycles with CB receptor agonistic/antagonistic properties against CNS disorders, cancer, obesity, and other complications. The structural activity relationship aspects have been keenly described along with enzymatic assay data. The specific outcomes of molecular docking studies have also been highlighted to get insights into the binding patterns of the molecules to CB receptors. � 2023 Bentham Science Publishers.
  • Item
    Introduction
    (Elsevier, 2022-10-14T00:00:00) Kumar, Pradeep; Kumar, Rakesh; Kumar, Raj
    An overview of 11 chapters in the book is presented. � 2023 Elsevier Ltd. All rights reserved.
  • Item
    FDA approved six-membered ring fused pyrimidine-based derivatives
    (Elsevier, 2022-10-14T00:00:00) Arora, Sahil; Kumar, Raj
    Pyrimidine-based derivatives play a vital role in the development of drugs due to their indispensable role in various biological processes. To date, ring fused pyrimidine-based derivatives have been reported to exhibit numerous biological activities including anticancer, antiviral, antianginal, anti-HIV, antifungal, antibacterial, anti-inflammatory, antitubercular and many others. There are numerous synthetic approaches available for the synthesis of fused pyrimidine-based derivatives which provides ample scope in the development of new drugs. Considering these medicinal attributes of fused pyrimidine-based derivatives, we have put forth this book chapter mainly focusing on the FDA approved six-membered ring fused pyrimidine-based derivatives. The present chapter deals with improved synthetic schemes, their biological importance and the adverse effects of FDA approved six-membered ring fused pyrimidine-based drugs. Covering all these aspects may lighten the researchers with the updated literature exploring the best synthetic routes and can think of alternative synthetic routes with less time consuming and non-toxic solvents. � 2023 Elsevier Ltd. All rights reserved.
  • Item
    Steering the antitumor drug discovery campaign towards structurally diverse indolines
    (Academic Press Inc., 2020) Thakur A.; Singh A.; Kaur N.; Ojha R.; Nepali K.
    Indoline framework is often perpended as a privileged heterocycle present in medicinally valuable compounds of natural and synthetic origin. This review article presents the rational approaches/strategies employed for the design of anticancer indolines along with the structure activity relationship and mechanistic insights revealed in the in-vitro and in-vivo assays. The chemist has always been fascinated towards the indoline ring for the construction of antitumor scaffolds owing to its versatility as evidenced by its existence in scaffolds inducing antiproliferative effects via diverse mechanisms. To the delight of medicinal chemist, the applicability of indoline has also been expanded towards the design of dual inhibitors (multitargeting anticancer agents) as well as PROTACS. Overall, it can be concluded that indoline moiety is a magic bullet and the scaffolds containing this ring are foraying towards detailed preclinical and clinical stage investigations by leaps and bounds.