Department Of Pharmaceutical Sciences and Natural Products
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52
Browse
9 results
Search Results
Item Probing the molecular mechanisms of ?-synuclein inhibitors unveils promising natural candidates through machine-learning QSAR, pharmacophore modeling, and molecular dynamics simulations(Institute for Ionics, 2023-07-18T00:00:00) Boulaamane, Yassir; Jangid, Kailash; Britel, Mohammed Reda; Maurady, AmalParkinson�s disease is characterized by a multifactorial nature that is linked to different pathways. Among them, the abnormal deposition and accumulation of ?-synuclein fibrils is considered a neuropathological hallmark of Parkinson�s disease. Several synthetic and natural compounds have been tested for their potency to inhibit the aggregation of ?-synuclein. However, the molecular mechanisms responsible for the potency of these drugs to further rationalize their development and optimization are yet to be determined. To enhance our understanding of the structural requirements necessary for modulating the aggregation of ?-synuclein fibrils, we retrieved a large dataset of ?-synuclein inhibitors with their reported potency from the ChEMBL database to explore their chemical space and to generate QSAR models for predicting new bioactive compounds. The best performing QSAR model was applied to the LOTUS natural products database to screen for potential ?-synuclein inhibitors followed by a pharmacophore design using the representative compounds sampled from each cluster in the ChEMBL dataset. Five natural products were retained after molecular docking studies displaying a binding affinity of ? 6.0�kcal/mol or lower. ADMET analysis revealed satisfactory properties and predicted that all the compounds can cross the blood�brain barrier and reach their target. Finally, molecular dynamics simulations demonstrated the superior stability of LTS0078917 compared to the clinical candidate, Anle138b. We found that LTS0078917 shows promise in stabilizing the ?-synuclein monomer by specifically binding to its hairpin-like coil within the N-terminal region. Our dynamic analysis of the inhibitor-monomer complex revealed a tendency towards a more compact conformation, potentially reducing the likelihood of adopting an elongated structure that favors the formation and aggregation of pathological oligomers. These findings offer valuable insights for the development of novel ?-synuclein inhibitors derived from natural sources. Graphical abstract: [Figure not available: see fulltext.]. � 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.Item Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine-sulfonamide hybrids as selective BRAFV600E inhibitors(Royal Society of Chemistry, 2022-10-21T00:00:00) Singh, Ankit Kumar; Novak, Jurica; Kumar, Adarsh; Singh, Harshwardhan; Thareja, Suresh; Pathak, Prateek; Grishina, Maria; Verma, Amita; Yadav, Jagat Pal; Khalilullah, Habibullah; Pathania, Vikas; Nandanwar, Hemraj; Jaremko, Mariusz; Emwas, Abdul-Hamid; Kumar, PradeepThe �RAS-RAF-MEK-ERK� pathway is an important signaling pathway in melanoma. BRAFV600E (70-90%) is the most common mutation in this pathway. BRAF inhibitors have four types of conformers: type I (?C-IN/DFG-IN), type II (?C-IN/DFG-OUT), type I1/2 (?C-OUT/DFG-IN), and type I/II (?C-OUT/DFG-OUT). First- and second-generation BRAF inhibitors show resistance to BRAFV600E and are ineffective against malignancies induced by dimer BRAF mutants causing �paradoxical� activation. In the present study, we performed molecular modeling of pyrimidine-sulfonamide hybrids inhibitors using 3D-QSAR, molecular docking, and molecular dynamics simulations. Previous reports reveal the importance of pyrimidine and sulfonamide moieties in the development of BRAFV600E inhibitors. Analysis of 3D-QSAR models provided novel pyrimidine sulfonamide hybrid BRAFV600E inhibitors. The designed compounds share similarities with several structural moieties present in first- and second-generation BRAF inhibitors. A total library of 88 designed compounds was generated and molecular docking studies were performed with them. Four molecules (T109, T183, T160, and T126) were identified as hits and selected for detailed studies. Molecular dynamics simulations were performed at 900 ns and binding was calculated. Based on molecular docking and simulation studies, it was found that the designed compounds have better interactions with the core active site [the nucleotide (ADP or ATP) binding site, DFG motif, and the phospho-acceptor site (activation segment) of BRAFV600E protein than previous inhibitors. Similar to the FDA-approved BRAFV600E inhibitors the developed compounds have [?C-OUT/DFG-IN] conformation. Compounds T126, T160 and T183 interacted with DIF (Leu505), making them potentially useful against BRAFV600E resistance and malignancies induced by dimer BRAF mutants. The synthesis and biological evaluation of the designed molecules is in progress, which may lead to some potent BRAFV600E selective inhibitors. � 2022 The Royal Society of Chemistry.Item Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies(Bentham Science Publishers, 2022-03-21T00:00:00) Sahil; Kaur, Kamalpreet; Jaitak, VikasBackground: Cancer is the second leading cause of death worldwide. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity, and development of resistance lead to serious side effects. Several experiments have been going on to develop compounds with minor or no side effects. Objective: This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action if thiazole, benzothiazole, and imidazothiazole-containing compounds as anticancer agents. Methods: Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates. Results: Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogenmediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets, such as topoisomerase and HDAC. Conclusion: Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 ?M, 0.00042 ?M, 0.18 ?M, and 0.67 ?M, respectively, not only exhibit anticancer activity, but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores. � 2022 Bentham Science Publishers.Item Multifaceted 3D-QSAR analysis for the identification of pharmacophoric features of biphenyl analogues as aromatase inhibitors(Taylor and Francis Ltd., 2021-12-29T00:00:00) Banjare, Laxmi; Singh, Yogesh; Verma, Sant Kumar; Singh, Atul Kumar; Kumar, Pradeep; Kumar, Shashank; Jain, Akhlesh Kumar; Thareja, SureshAromatase, a cytochrome P450 enzyme, is responsible for the conversion of androgens to estrogens, which fuel the multiplication of cancerous cells. Inhibition of estrogen biosynthesis by aromatase inhibitors (AIs) is one of the highly advanced therapeutic approach available for the treatment of estrogen-positive breast cancer. Biphenyl moiety aids lipophilicity to the conjugated scaffold and enhances the accessibility of the ligand to the target. The present study is focused on the investigation of, the mode of binding of biphenyl with aromatase, prediction of ligand-target binding affinities, and pharmacophoric features essential for favorable for aromatase inhibition. A multifaceted 3D-QSAR (SOMFA, Field and Gaussian) along with molecular docking, molecular dynamic simulations and pharmacophore mapping were performed on a series of biphenyl bearing molecules (1�33) with a wide range of aromatase inhibitory activity (0.15�920 nM). Among the generated 3D-QSAR models, the Force field-based 3D-QSAR model (R 2 = 0.9151) was best as compared to SOMFA and Gaussian Field (R 2=0.7706, 0.9074, respectively). However, all the generated 3D-QSAR models were statistically fit, robust enough, and reliable to explain the variation in biological activity in relation to pharmacophoric features of dataset molecules. A four-point pharmacophoric features with three acceptor sites (A), one aromatic ring (R) features, AAAR_1, were obtained with the site and survival score values 0.890 and 4.613, respectively. The generated 3D-QSAR plots in the study insight into the structure�activity relationship of dataset molecules, which may help in the designing of potent biphenyl derivatives as newer inhibitors of aromatase. Communicated by Ramaswamy H. Sarma. � 2021 Informa UK Limited, trading as Taylor & Francis Group.Item De novo designing, assessment of target affinity and binding interactions against aromatase: Discovery of novel leads as anti-breast cancer agents(Springer, 2020-11-13T00:00:00) Verma, Sant Kumar; Ratre, Pooja; Jain, Akhlesh Kumar; Liang, Chengyuan; Gupta, Ghanshyam Das; Thareja, SureshAromatase inhibitors (AIs) have been emerged as promising anti-cancer agents for the treatment of hormone dependent breast cancer (HDBC) in women because of their excellent ability of inhibiting oestrogen synthesis. Here, we have implicated structure-based comprehensive approaches to discover novel drug/lead-like AIs. The molecular modelling and energy optimization were performed using Chem Office package. The e-LEA3D web server was used to design novel drug/lead-like AIs as well as generation of ADME/drug-likeness parameters. Target binding affinities and mode of binding interactions were mapped using Molegro Virtual Docker (MVD) to re-optimize the best de novo generated molecules. We have successfully designed novel AIs (compounds 1�7) using de novo technique performed on e-LEA3D. All the designed molecules were found optimum drug-like candidates based on various in silico screening parameters including �rule of five�. The energy optimized conformers of generated molecules (1�7) were docked in the active site, corresponding to co-crystallized androstenedione (ASD), of aromatase to predict ligand-target binding affinity and their binding interactions. The molecules (1�7) showed comparable to higher binding affinity towards aromatase with MolDock Score ranges from ? 134.881 to ? 152.453�Kcal/mol as compared with natural substrate ASD (? 128.639�Kcal/mol) and standard letrozole (? 136.784�Kcal/mol). The de novo designed molecules (1�7) can be developed as novel AIs, and their binding properties can be used for the further designing of newer AIs by medicinal chemists. � 2020, Springer Science+Business Media, LLC, part of Springer Nature.Item In silico docking of anti cancerous drugs with ?-cyclodextrin polymer as a prominent approach to improve the bioavailability(Bentham Science Publishers, 2020-10-14T00:00:00) Jain, Akhlesh K.; Mishra, Keerti; Thareja, SureshBackground: ?-Cyclodextrin, a cyclic oligosaccharides having 7 macrocyclic rings of glucose subunits usually linked together by ?-1,4 glycosidic bond, bears characteristic chemical structure, with an exterior portion as hydrophilic to impart water solubility and interior cavity as hydrophobic, for hosting the hydrophobic molecules. Objective: In the present work binding affinities and interactions between various anti-cancerous drugs and ?cyclodextrin using molecular docking simulations was examined for the bioavailability enhancement of cytotoxic drugs through improved solubility for the treatment of breast cancer. Methods: Molegro Virtual Docker, an integrated software was used for the prediction and estimation of interaction between ?-cyclodextrin and anti cancerous drugs. Results: Out of tested anti cancerous drug, Olaparib having pyridopyridazione scaffold possess highest MolDock (-130.045) and Re-ranks score (-100.717), ensuring strong binding affinity. However, 5-Fluoro Uracil exhibited the lowest MolDock score (-61.0045), indicating weak or no binding affinity, while few drugs showed no H-bond interaction with the ?-cyclodextrin. Conclusion: The binding conformations of anti cancerous drugs obtained from the present study can be selected for the development of improved formulation having superior solubility which will lead to attain better pharmacological profile with negligible toxicity. � 2021 Bentham Science Publishers.Item In silico molecular interaction studies of chitosan polymer with aromatase inhibitor: Leads to letrozole nanoparticles for the treatment of breast cancer(Bentham Science Publishers, 2020-08-26T00:00:00) Mishra, Keerti; Verma, Sant K.; Ratre, Pooja; Banjare, Laxmi; Jain, Abhishek; Thareja, Suresh; Jain, Akhlesh K.Background: It takes a lot more studies to evaluate the molecular interaction of nanoparticles with the drug, their drug delivery potential and release kinetics. Thus, we have taken in silico and in vitro approaches into account for the evaluation of the drug delivery ability of the chitosan nanoparticles. Objective: The present work was aimed to study the interaction of chitosan nanoparticles with appropriate aromatase inhibitors using in silico tools. Further, synthesis and characterization of chitosan nanoparticles having optimal binding energy and affinity between drug and polymer in terms of size, encapsulation efficiency were carried out. Methods: In the current study, molecular docking was used to map the molecular interactions and estimation of binding energy involved between the nanoparticles and the drug molecules in silico. Letrozole is used as a model cytotoxic agent currently being used clinically; hence Letrozole loaded chitosan nanoparticles were formulated and characterized using photomicroscope, particle size analyzer, scanning electron microscope and fourier transform infra-red spectroscopy. Results: Letrozole had the second-highest binding affinity within the core of chitosan with MolDock (-102.470) and Re-rank (-81.084) scores. Further, it was investigated that formulated nanoparticles were having superior drug loading capacity and high encapsulation efficiency. In vitro drug release study exhibited prolonged release of the drug from chitosan nanoparticles. Conclusion: Results obtained from the in silico and in vitro studies suggest that Letrozole loaded nanoparticles are ideal for breast cancer treatment. � 2021 Bentham Science Publishers.Item Synthesis, in vitro, and docking analysis of c-3 substituted coumarin analogues as anticancer agents(Bentham Science Publishers, 2020-01-28T00:00:00) Thakur, Anuradha; Kaur, Kamalpreet; Sharma, Praveen; Singla, Ramit; Singh, Sandeep; Jaitak, VikasBackground: Breast cancer (BC) is a leading cause of cancer-related deaths in women next to skin cancer. Estrogen receptors (ERs) play an important role in the progression of BC. Current anticancer agents have several drawbacks such as serious side effects and the emergence of resistance to chemotherapeutic drugs. As coumarins possess minimum side effects along with multidrug reversal activity, it has a tremendous ability to regulate a diverse range of cellular pathways that can be explored for selective anticancer activity. Objectives: Synthesis and evaluation of new coumarin analogues for anti-proliferative activity on human breast cancer cell line MCF-7 along with exploration of binding interaction of the compounds for ER-? target protein by molecular docking. Methods: In this study, the anti-proliferative activity of C-3 substituted coumarins analogues (1-17) has been evaluated against estrogen receptor-positive MCF-7 breast cancer cell lines. Molecular interactions and ADME study of the compounds were analyzed by using Schrodinger software. Results: Among the synthesized analogues, 12 and 13 show good antiproliferative activity with IC50 values 1 and 1.3 ?M, respectively. Molecular docking suggests a remarkable binding pose of all the seventeen compounds. Compounds 12 and 13 were found to exhibit a docking score of -4.10 kcal/mol and -4.38 kcal/mol, respectively. Conclusion: Compounds 12 and 13 showed the highest activity followed by 1 and 5. ADME properties of all compounds were in the acceptable range. The active compounds can be taken for lead optimization and mechanistic interventions for their in vivo study in the future. � 2021 Bentham Science Publishers.Item Synthesis and In Silico Studies of C-4 Substituted Coumarin Analogues as Anticancer Agents(Bentham Science Publishers, 2020-06-29T00:00:00) Dandriyal, Jyoti; Kaur, Kamalpreet; Jaitak, VikasBackground: Coumarin is a fused ring system and possesses the enormous capability of targeting various receptors participating in the cancer pathway. Coumarin and its derivatives were found to exhibit very rare toxicity and other side effects. It has been found its immense anticancer potential depends on the nature of the group present and its pattern of substitution on the basic nu-cleus. Objectives: Synthesis of C-4 substituted coumarin derivatives and to study their molecular interactions with ER? for the anticancer activity for Breast Cancer. Methods: C-4 substituted coumarins analogues (1-10) have been synthesized using conventional heating and microwave irradiation. Using Schrodinger software, molecular modeling studies were carried out and ADME properties of the compounds were predicted. Results: All the synthesized compounds have shown better G-Score (-6.87 to-8.43 kcal/mol) as compared to the standard drug tamoxifen (-5.28kcal/mol) and auraptene (-3.89kcal/mol). Molecular docking suggests that all compounds fit in the active site of protein as they have the same hydro-phobic pocket as standard drug tamoxifen, and have an acceptable range of ADME properties. Conclusion: Microwave-assisted synthesis showed better results as compared to conventional heat-ing. In silico studies revealed that all the compounds befit in the active site of the protein. ADME properties showed that all compounds are in allowable limits for human oral absorption. In the fu-ture, there is a possibility of in vitro and in vivo studies of the synthesized compounds. � 2021 Bentham Science Publishers.