Department Of Pharmaceutical Sciences and Natural Products

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/52

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    E-pharmacophore guided discovery of pyrazolo[1,5-c]quinazolines as dual inhibitors of topoisomerase-I and histone deacetylase
    (Academic Press Inc., 2020) Joshi G.; Kalra S.; Yadav U.P.; Sharma P.; Singh P.K.; Amrutkar S.; Ansari A.J.; Kumar S.; Sharon A.; Sharma S.; Sawant D.M.; Banerjee U.C.; Singh S.; Kumar R.
    In the quest to ameliorate the camptothecin (CPT) downsides, we expedite to search for stable non-CPT analogues among 11 motifs of pyrazoloquinazolines reported. E-pharmacophore drug design approach helped filtering out pyrazolo[1,5-c]quinazolines as Topoisomerase I (TopoI) 'interfacial' inhibitors. Three compounds, 3c, 3e, and 3l were shown to be potent non-intercalating inhibitors of TopoI specifically and showed cancer cell-specific cytotoxicity in lung, breast and colon cancer cell lines. The compounds induced cell cycle arrest at S-phase, mitochondrial cell death pathway and modulated oxidative stress in cancer cells. Furthermore, a preliminary study was conducted to explore the feasibility of these compounds to be developed as dual TopoI-HDAC1 (histone deacetylase 1) inhibitors (4a) to combat resistance. Compound 4a was found to possess dual inhibitory capabilities in-vitro. Cytotoxic potential of 4a was found to be significantly higher than parent compound in 2D as well as 3D cancer cell models. Probable binding modes of 4a with TopoI and HDAC1 active sites were examined by molecular modelling.
  • Item
    Exploration of Pd-catalysed four-component tandem reaction for one-pot assembly of pyrazolo[1,5-c]quinazolines as potential EGFR inhibitors
    (Academic Press Inc., 2019) Ansari, A.J; Joshi, G; Yadav, U.P; Maurya, A.K; Agnihotri, V.K; Kalra, S; Kumar, R; Singh, S; Sawant, D.M.
    A series of pyrazolo[1,5-c]quinazolines as EGFR inhibitors was designed and synthesized by highly efficient and novel multicomponent route involving Pd-catalyzed tandem one-pot four-component reaction. The reaction proceeds with good functional group tolerance under a simple condition with excellent regioselectivity and high efficiency. Target compounds were screened against cancer cell lines MDA-MB-231, A549 and H1299. Of these, 9b and 10b exhibited superior anticancer activity (IC50 < 2.5 ?M) to erlotinib and gefitinib. Synthetics were able to inhibit EGFR mediated kinase activity, induced ROS in cancer cells promoting mitochondrial mediated apoptosis via halting cell cycle progression at G1 phase.