Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Alloyed monolayers of Cu, Ag, Au and Pt in hexagonal phase: A comprehensive first principles study
    (Elsevier Ltd, 2018) Kapoor, Pooja; Kumar, Arun; Sharma, Munish; Kumar, Jagdish; Kumar, Ashok; Ahluwalia, P. K.
    We present density functional theory (DFT) based comprehensive study of two-dimensional (2D) alloyed monolayers of noble metals (AgCu, AgPt, AgAu, AuCu, AuPt and CuPt) in hexagonal phase within numerical atomic orbitals and plane wave basis sets methods. The monolayers considered exhibit positive phonon frequencies suggesting them to be dynamically stable. The Pt containing alloyed monolayers have superior structural stability (binding energy and tensile strength) and exhibit metallic and ferromagnetic character amongst all the alloyed monolayers. Interestingly, alloying of Au monolayer with Cu and Ag show semiconducting behavior whereas alloyed AgCu monolayer posseses Dirac-cone like features at high symmetry points. These distinct features in electronic structures of alloyed 2D monolayers have been captured in STM like set up. An anisotropic behavior has been observed in dielectric spectra for all the considered structures. Tunneling characteristics show NDR region for Pt containing alloyed monolayers. The considered alloyed monolayers may potentially be useful as a building blocks for the applications in nano- and opto-electronics. ? 2017 Elsevier B.V.
  • Thumbnail Image
    Item
    Electronic properties and STM images of vacancy clusters and chains in functionalized silicene and germanene
    (Elsevier B.V., 2017) Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.
    Electronic properties and STM topographical images of X (=F, H, O) functionalized silicene and germanene have been investigated by introducing various kind of vacancy clusters and chain patterns in monolayers within density functional theory (DFT) framework. The relative ease of formation of vacancy clusters and chain patterns is found to be energetically most favorable in hydrogenated silicene and germanene. F- and H-functionalized silicene and germanene are direct bandgap semiconducting with bandgap ranging between 0.1?1.9?eV, while O-functionalized monolayers are metallic in nature. By introducing various vacancy clusters and chain patterns in both silicene and germanene, the electronic and magnetic properties get modified in significant manner e.g. F- and H-functionalized silicene and germanene with hexagonal and rectangle vacancy clusters are non-magnetic semiconductors with modified bandgap values while pentagonal and triangle vacancy clusters induce metallicity and magnetic character in monolayers; hexagonal vacancy chain patterns induce direct-to-indirect gap transition while zigzag vacancy chain patterns retain direct bandgap nature of monolayers. Calculated STM topographical images show distinctly different characteristics for various type of vacancy clusters and chain patterns which may be used as electronic fingerprints to identify various vacancy patterns in silicene and germanene created during the process of functionalization. ? 2016 Elsevier B.V.