Department Of Physics

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Fabrication of energy storage EDLC device based on self-synthesized TiO2 nanowire dispersed polymer nanocomposite films
    (Springer Science and Business Media Deutschland GmbH, 2021-05-24T00:00:00) Devi, Chandni; Swaroop, Ram; Arya, Anil; Tanwar, Shweta; Sharma, A.L.; Kumar, Sandeep
    In this work, a systematic study of titanium oxide (TiO2) nanowires incorporated polymer nanocomposite (PNC) films prepared by a standard solution cast technique is reported. The structural, morphological, dielectric, and electrochemical properties were investigated thoroughly. The polymer nanocomposite films demonstrated improved electrical and electrochemical properties as compared to polymer�salt complex film. The morphological and structural properties have been examined by the field emission scanning electron microscope, Fourier transform infrared spectroscopy, and X-ray diffraction. It is observed that the maximum ionic conductivity is of the order of 10�5 S cm?1 exhibited by 0.5 wt% nanowire added polymer nanocomposite film. The ion transference number was close to unity for optimized film and stability window of about ~ 5�V. The shift of loss tangent peak toward the high-frequency window with nanowire addition indicates a decrease of the relaxation time. The optimized TiO2 nanowire dispersed polymer nanocomposite film has been used to fabricate the electric double-layer capacitor cells. The fabricated cell demonstrates the specific capacitance of about 57.5 F/g (at 10�mV/s). The calculated energy density and power density are 1.38 Wh kg?1 and 0.709�kW�kg?1, respectively. The Coulombic efficiency is 97.7% up to the 500 cycles for the fabricated cell. The prepared polymer nanocomposite has the potential to use it as electrolyte cum separator for solid-state electric double-layer capacitor applications. � 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
  • Item
    Electrolyte for Energy Storage/Conversion (Li+, Na+, Mg2+) Devices Based on PVC and Their Associated Polymer: A Comprehensive Review
    (Springer, 2019) Arya, Anil; Sharma, Achchhe Lal
    Encouraged by the first report of ionic conductivity in 1973 and the consequent boom for the need of clean and green renewable energy resources, there has been a marked increase toward R&D of polymer electrolytes cum separator for energy storage devices. The most suitable alternative to the conventional energy storage devices is battery and it has the potential to fulfill the energy demand and could be used for storing energy produced from different alternative resources, i.e., wind/hydro/solar energy. Electrolyte is a key component of battery that plays a crucial role in its overall performance. The draft of the article is an attempt to present a coherent yet concise review of Li, Na, and Mg batteries using polymer electrolytes. The main topics given focus in this review are an introduction to properties shaping the polymer electrolytes, types of polymer electrolytes, and properties of constituents of polymer electrolytes (polymer host, salt, solvent, ionic liquid, plasticizer, nanofiller, nanoclay, nanorod, nanowire). The approaches to enhance the electrochemical properties are presented with a suitable ion transport mechanism. A special section is introduced to cover dendrite growth and strategies to suppress it. Important preparation methods and characterization techniques are introduced. The synopses of the experimental investigations are presented for ionic liquid/gel/composite polymer electrolytes. Finally, the future outlook highlights the further development for the next-generation energy storage devices.