Department Of Physics
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/57
Browse
2 results
Search Results
Item Hydrogen-impurity-induced unconventional magnetism in semiconducting molybdenum ditelluride(American Physical Society, 2023-04-28T00:00:00) Krieger, Jonas A.; Tay, Daniel; Rusinov, Igor P.; Barua, Sourabh; Biswas, Pabitra K.; Korosec, Lukas; Prokscha, Thomas; Schmitt, Thorsten; Schr�ter, Niels B. M.; Shang, Tian; Shiroka, Toni; Suter, Andreas; Balakrishnan, Geetha; Chulkov, Evgueni V.; Strocov, Vladimir N.; Salman, ZaherLayered transition-metal dichalcogenides are proposed as building blocks for van der Waals heterostructures due to their graphenelike two-dimensional structure. For this purpose, a magnetic semiconductor could represent an invaluable component for various spintronics and topotronics devices. Here, we combine different local magnetic probe spectroscopies with angle-resolved photoemission and density-functional theory calculations to show that 2H-MoTe2 is on the verge of becoming magnetic. Our results present clear evidence that the magnetism can be "switched on"by a hydrogenlike impurity. We also show that this magnetic state survives up to the free surface region, demonstrating the material's potential applicability as a magnetic component for thin-film heterostructures. � 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Item Unraveling the Role of Orbital Interaction in the Electrochemical HER of the Trimetallic AgAuCu Nanobowl Catalyst(American Chemical Society, 2023-03-24T00:00:00) Biswas, Rathindranath; Dastider, Saptarshi Ghosh; Ahmed, Imtiaz; Barua, Sourabh; Mondal, Krishnakanta; Haldar, Krishna KantaUnraveling the origins of the electrocatalytic activity of composite nanomaterials is crucial but inherently challenging. Here, we present a comprehensive investigation of the influence of different orbitals� interaction in the AuAgCu nanobowl model electrocatalyst during the hydrogen evolution reaction (HER). According to our theoretical study, AgAuCu exhibits a lower energy barrier than AgAu and AgCu bimetallic systems for the HER, suggesting that the trimetallic AgAuCu system interacts optimally with H*, resulting in the most efficient HER catalyst. As we delve deeper into the HER activity of AgAuCu, it was observed that the presence of Cu allows Au to adsorb the H* intermediate through the hybridization of s orbitals of hydrogen and s, dx2-y2, and dz2 orbitals of Au. Such orbital interaction was not present in the cases of AgAu and AgCu bimetallic systems, and as a result, these bimetallic systems exhibit lower HER activities. � 2023 American Chemical Society.